亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    如圖1,已知△ABC中,AB=BC=1,∠ABC=90°,把一塊含30°角的△DEF的直角頂點(diǎn)D放在AC的中點(diǎn)上(直角三角板的短直角邊為DE,長(zhǎng)直角邊為DF),將直角三角板DEF繞D點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)。
    ⑴在圖1中,DE交AB于M,DF交BC于N。①說(shuō)明DM=DN;②在這一過(guò)程中,直角三角板DEF與△ABC的重疊部分為四邊形DMBN,請(qǐng)說(shuō)明四邊形DMBN的面積是否發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明是如何變化的?若不發(fā)生變化,求出其面積;
    ⑵繼續(xù)旋轉(zhuǎn)至如圖2的位置,延長(zhǎng)AB交DE于M,延長(zhǎng)BC交DF于N,DM=DN是否仍然成立?若成立,請(qǐng)給出理由;若不成立,請(qǐng)說(shuō)明理由;
    ⑶繼續(xù)旋轉(zhuǎn)至如圖3的位置,延長(zhǎng)FD交BC于N,延長(zhǎng)ED交AB于M,DM=DN是否仍然成立?若成立,請(qǐng)給出結(jié)論,不用說(shuō)明理由。

    解:(1)①連接BD,∵AB=BC,∠ABC=90,∴△ABC是等腰直角三角形,
    ∴∠A=∠C="45" ∵D是AC的中點(diǎn),∴BD是△ABC的中線(xiàn),∴BD是△ABC的高,
    ∴∠BDC=90,∴∠DBC=45=∠DCB,∴BD=CD=AD,∴∠DBC=∠DAB=45,
    ∵∠EDF=90=∠ADB,∠EDB為公共角,∴∠ADM=∠BDN,∴△ADM≌△BDN(ASA),
    ∴DM=DN.
    ②四邊形DMBN的面積不發(fā)生變化,理由如下:
    由①可知S△ADM=S△BDN,∴S四邊形DMBN=S△ADB,已知△ADB的面積是一個(gè)定值
    ∴四邊形DMBN的面積不發(fā)生變化,∵AB=AC=1,S△ADB=1/2S△ABC,
    ∴S四邊形DMBN=S△ABD=1/2S△ABC=1/4.
    (2)連接BD,由(1)可知,BD=CD,∵FDE=90,∴∠FDN=90,
    ∵∠BDC=90,∠FDC是公共角,∴∠BDM=∠CDN,∵∠MBE=∠NDE,
    ∠BEM=∠NED,∴∠M=∠N,∴△BMD≌△CND(AAS)
    ∴DM=DN
    (3)DM=DN

    解析

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    精英家教網(wǎng)定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱(chēng)這個(gè)圖形是自相似圖形.
    探究:
    (1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫(huà)出分割線(xiàn),并說(shuō)明理由.
    (2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱(chēng)為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱(chēng)為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為SN
    ①若△DEF的面積為10000,當(dāng)n為何值時(shí),2<Sn<3?(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫(xiě)出三次的嘗試估算過(guò)程)
    ②當(dāng)n>1時(shí),請(qǐng)寫(xiě)出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式.(不必證明)精英家教網(wǎng)

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    精英家教網(wǎng)如圖,若已知△ABC中,D、E分別為AB、AC的中點(diǎn),則可得DE∥BC,且DE=
    12
    BC.根據(jù)上面的結(jié)論:
    (1)你能否說(shuō)出順次連接任意四邊形各邊中點(diǎn),可得到一個(gè)什么特殊四邊形并說(shuō)明理由;
    (2)如果將(1)中的“任意四邊形”改為條件是“平行四邊形”或“菱形”或“矩形”或“等腰梯形”,那么它們的結(jié)論又分別怎樣呢?請(qǐng)說(shuō)明理由.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    (2013•德州)(1)如圖1,已知△ABC,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE,連接BE,CD,請(qǐng)你完成圖形,并證明:BE=CD;(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡);
    (2)如圖2,已知△ABC,以AB、AC為邊向外作正方形ABFD和正方形ACGE,連接BE,CD,BE與CD有什么數(shù)量關(guān)系?簡(jiǎn)單說(shuō)明理由;
    (3)運(yùn)用(1)、(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
    如圖3,要測(cè)量池塘兩岸相對(duì)的兩點(diǎn)B,E的距離,已經(jīng)測(cè)得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的長(zhǎng).

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    (1)添線(xiàn)補(bǔ)全如圖1幾何體的三視圖.

    (2)如圖2,已知△ABC.請(qǐng)你確定一點(diǎn)P,使PB=PC,且點(diǎn)P到∠B的兩邊距離相等.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    如圖1,已知△ABC中,AB=BC=1,∠ABC=90°,把一塊含30°角的直角三角板DEF的直角頂點(diǎn)D放在AC的中點(diǎn)上(直角三角板的短直角邊為DE,長(zhǎng)直角邊為DF),將直角三角板DEF繞D點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn).
    (1)在圖1中,DE交邊AB于M,DF交邊BC于N
    ①證明:DM=DN
    ②在這一旋轉(zhuǎn)過(guò)程中,直角三角板DEF與△ABC的重疊部分為四邊形DMBN,請(qǐng)說(shuō)明四邊形DMBN的面積是否發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明是如何變化的?若不發(fā)生變化,求出其面積
    (2)繼續(xù)旋轉(zhuǎn)至如圖2的位置,延長(zhǎng)AB交DE于M,延長(zhǎng)BC交DF于N,DM=DN是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案