亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點(diǎn)E,過(guò)點(diǎn)EEFBC,垂足為F,延長(zhǎng)CDGB的延長(zhǎng)線于點(diǎn)P,連接BD.

    (1)求證:PG與⊙O相切;

    (2)若=,求的值;

    (3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長(zhǎng).

    【答案】(1)證明見解析;(2);(3)OE=2﹣4.

    【解析】

    1)要證PG與⊙O相切只需證明∠OBG=90°,由∠A與∠BDC是同弧所對(duì)圓周角且∠BDC=DBO可得∠CBG=DBO,結(jié)合∠DBO+OBC=90°即可得證;

    (2)求需將BEOCOC相等線段放入兩三角形中,通過(guò)相似求解可得,作OMAC、連接OA,證BEF∽△OAM,由AM=AC、OA=OC,結(jié)合即可得;

    (3)RtDBC中求得BC=8DCB=30°,在RtEFC中設(shè)EF=x,知EC=2x、FC=x、BF=8x,繼而在RtBEF中利用勾股定理求出x的,從而得出答案.

    1)如圖,連接OB,則OB=OD,

    ∴∠BDC=DBO,

    ∵∠BAC=BDC、BDC=GBC,

    ∴∠GBC=BDC,

    CD是⊙O的切線,

    ∴∠DBO+OBC=90°,

    ∴∠GBC+OBC=90°,

    ∴∠GBO=90°,

    PG與⊙O相切;

    (2)過(guò)點(diǎn)OOMAC于點(diǎn)M,連接OA,

    則∠AOM=COM=AOC,

    ,

    ∴∠ABC=AOC,

    又∵∠EFB=OGA=90°,

    ∴△BEF∽△OAM,

    ,

    AM=AC,OA=OC,

    ,

    又∵

    ;

    (3)PD=OD,PBO=90°,

    BD=OD=8,

    RtDBC中,BC==8,

    又∵OD=OB,

    ∴△DOB是等邊三角形,

    ∴∠DOB=60°,

    ∵∠DOB=OBC+OCB,OB=OC,

    ∴∠OCB=30°,

    ,=,

    ∴可設(shè)EF=x,則EC=2x、FC=x,

    BF=8x,

    RtBEF中,BE2=EF2+BF2

    100=x2+(8x)2,

    解得:x=6±,

    6+>8,舍去,

    x=6﹣

    EC=12﹣2,

    OE=8﹣(12﹣2)=2﹣4.

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】將連續(xù)的奇數(shù)1,3,57,9……排成如下的數(shù)表:

    1)十字框中的5個(gè)數(shù)的和與中間的數(shù)23有什么關(guān)系?若將十字框上下左右平移,可框住另外5個(gè)數(shù),這5個(gè)數(shù)還有這種規(guī)律嗎?

    2)設(shè)十字框中中間的數(shù)為,用含的式子表示十字框中的其他四個(gè)數(shù);

    3)十字框中的5個(gè)數(shù)的和能等于2019嗎?若能,請(qǐng)寫出這5個(gè)數(shù);若不能,說(shuō)明理由.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】如圖,有、、三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購(gòu)物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在(

    A.在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處

    B.ACBC兩邊垂直平分線的交點(diǎn)處

    C.AC、BC兩邊高線的交點(diǎn)處

    D.ACBC兩邊中線的交點(diǎn)處

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).

    (1)將ABC向下平移5個(gè)單位后得到A1B1C1,請(qǐng)畫出A1B1C1;

    (2)將ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到A2B2C2,請(qǐng)畫出A2B2C2;

    (3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無(wú)須說(shuō)明理由)

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】如圖,ABC,Am°,ABC和∠ACD的平分線相交于點(diǎn)A1,得∠A1A1BC和∠A1CD的平分線相交于點(diǎn)A2,得∠A2;…;A2018BC和∠A2018CD的平分線交于點(diǎn)A2019則∠A2019________度.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】如果三角形有一邊上的中線恰好等于這邊的長(zhǎng),那么我們稱這個(gè)三角形為美麗三角形

    (1)如圖△ABC中,AB=AC=BC=2,求證:△ABC美麗三角形;

    (2)RtABC中,∠C=90°,AC=2,若△ABC美麗三角形,求BC的長(zhǎng).

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】某市將開展以走進(jìn)中國(guó)數(shù)學(xué)史為主題的知識(shí)凳賽活動(dòng),紅樹林學(xué)校對(duì)本校100名參加選拔賽的同學(xué)的成績(jī)按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:

    成績(jī)等級(jí)

    頻數(shù)(人數(shù))

    頻率

    A

    4

    0.04

    B

    m

    0.51

    C

    n

    D

    合計(jì)

    100

    1

    (1)求m=   ,n=   ;

    (2)在扇形統(tǒng)計(jì)圖中,求“C等級(jí)所對(duì)應(yīng)心角的度數(shù);

    (3)成績(jī)等級(jí)為A4名同學(xué)中有1名男生和3名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)代表學(xué)校參加全市比賽,請(qǐng)用樹狀圖法或者列表法求出恰好選中“11的概率.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地轎車的平均速度大于貨車的平均速度,如圖,線段OA、折線BCD分別表示兩車離甲地的距離單位:千米與時(shí)間單位:小時(shí)之間的函數(shù)關(guān)系.

    線段OA與折線BCD中,______表示貨車離甲地的距離y與時(shí)間x之間的函數(shù)關(guān)系.

    求線段CD的函數(shù)關(guān)系式;

    貨車出發(fā)多長(zhǎng)時(shí)間兩車相遇?

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】如圖,在平行四邊形中,點(diǎn)O為對(duì)角線BD的中點(diǎn),DE、BF分別平分∠ADC和∠ABC.

    (1)求證:EFBD互相平分;

    (2)若∠A=60,AE=2EB,AD=4,求四邊形DEBF的周長(zhǎng).

    查看答案和解析>>

    同步練習(xí)冊(cè)答案