【題目】如圖,四邊形 ACDE 是證明勾股定理時用到的一個圖形,a 、b 、c 是 RtABC和 RtBED 的邊長,已知,這時我們把關于 x 的形如
二次方程稱為“勾系一元二次方程”.
請解決下列問題:
(1)寫出一個“勾系一元二次方程”;
(2)求證:關于 x 的“勾系一元二次方程”,必有實數(shù)根;
(3)若 x 1是“勾系一元二次方程” 的一個根,且四邊形 ACDE 的周長是6
,求ABC 的面積.
【答案】(1)(答案不唯一)(2)見解析(3)1.
【解析】
(1)直接找一組勾股數(shù)代入方程即可;
(2)根據根的判別式即可求解;
(3)根據方程的解代入求出a,b,c的關系,再根據完全平方公式的變形進行求解.
(1)當a=3,b=4,c=5時,
勾系一元二次方程為;
(2)依題意得△=()2-4ab=2c2-4ab,
∵a2+b2=c2,∴2c2-4ab=2(a2+b2)-4ab=2(a-b)2≥0,
即△≥0,故方程必有實數(shù)根;
(3)把x=-1代入得a+b=c
∵四邊形 ACDE 的周長是6,
即2(a+b)+ c=6
,故得到c=2,
∴a2+b2=4,a+b=2
∵(a+b)2= a2+b2+2ab
∴ab=2,
故ABC 的面積為ab=1.
科目:初中數(shù)學 來源: 題型:
【題目】是
的直角三角形,
的中點分別是點
點
,動點
從點
出發(fā),按箭頭方向通過
到
;以
的速度運動,設
點從
開始運動的距離為
,
的面積為
試回答以下問題:
(1)點從
出發(fā)到
停止,寫出
與
的函數(shù)關系式并寫出
的取值范圍.
(2)求出點從
出發(fā)后幾秒時,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)中x與y的部分對應值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
①ac<0;
②當x>1時,y的值隨x值的增大而減。
③x=3是方程ax2+(b﹣1)x+c=0的一個根;
④當﹣1<x<3時,ax2+(b﹣1)x+c>0.
上述結論中正確的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點O為對角線AC的中點,過點o作射線OG、ON分別交AB,BC于點E,F(xiàn),且∠EOF=90°,BO、EF交于點P.則下列結論中:
⑴圖形中全等的三角形只有兩對;
⑵正方形ABCD的面積等于四邊形OEBF面積的4倍;
⑶BE+BF= OA;
⑷AE2+CF2=2OPOB.
正確的結論有( )個.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已如兩個全等的等腰△ABC、△DEF,其中∠ACB=∠DFE=90°,E為AB中點,△DEF可繞頂點E旋轉,線段DE,EF分別交線段CA,CB(或它們所在的直線)于M、N.
(1)如圖1,當線段EF經過△ABC的頂點時,點N與點C重合,線段DE交AC于M,已知AC=BC=5,則MC= ;
(2)如果2,當線段EF與線段BC邊交于N點,線段DE與線段AC交于M點,連MN,EC,請?zhí)骄?/span>AM,MN,CN之間的等量關系,并說明理由;
(3)如圖3,當線段EF與BC延長線交于N點,線段DE與線段AC交于M點,連MN,EC,則(2)中AM,MN,CN之間的等量關系還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲船勻速順流而下從港到
港,同時乙船勻速逆流而上從
港到
港,
港處于
、
兩港的正中間,某個時刻,甲船接到通知需立即掉頭逆流而上到
處,到
處后迅速按原順流速度駛向
港,最后甲、乙兩船都到達了各自的目的地.甲、乙兩船在靜水中的速度相同,設甲、乙兩船與
港的距離之和為
,行駛時間為
,
與
的部分關系如圖,則當兩船在
、
間某處相超時,兩船距離
港的距離為________千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,從點P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴展下去,則P2020的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知⊙A經過點E,B,C,O,且C(0,6)、E(﹣8,0)、O(0,0),則cos∠OBC的值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com