亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    若x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數(shù)a,b,c有如下關系:x1+x2=-,x1•x2=,把它們稱為一元二次方程根與系數(shù)關系定理,請利用此定理解答一下問題:
    已知x1,x2是一員二次方程(m-3)x2+2mx+m=0的兩個實數(shù)根.
    (1)是否存在實數(shù)m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,請你說明理由;
    (2)若|x1-x2|=,求m的值和此時方程的兩根.
    【答案】分析:(1)先根據(jù)根的判別式得到m的取值范圍為m≥0且m≠3,再根據(jù)根與系數(shù)的關系得x1+x2=-,x1•x2=,然后利用-x1+x1x2=4+x2=4-,再解關于m的方程即可;
    (2)先利用完全平方公式變形得到(x1-x22=3,即(x1+x22-4x1x2=3,再把x1+x2=-,x1•x2=代入得到(-2-4×=3,解得m1=1,m2=9,
    然后分別把m的值代入原方程,并且利用公式法解方程.
    解答:解:(1)存在.
    ∵x1,x2是一元二次方程(m-3)x2+2mx+m=0的兩個實數(shù)根,
    ∴m-3≠0且△=4m2-4(m-3)•m≥0,
    ∴m的取值范圍為m≥0且m≠3,
    根據(jù)根與系數(shù)的關系得x1+x2=-,x1•x2=
    ∵-x1+x1x2=4+x2,
    ∴x1x2=4+x1+x2,
    =4-,
    ∴m=12;

    (2)∵|x1-x2|=
    ∴(x1-x22=3,即(x1+x22-4x1x2=3,
    ∴(-2-4×=3,解得m1=1,m2=9,
    當m=1時,原方程變形為2x2-2x-1=0,解得x1=,x2=;
    當m=9時,原方程變形為2x2+6x+3=0,解得x1=,x2=
    點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程兩個為x1,x2,則x1+x2=-,x1•x2=.也考查了一元二次方程根的判別式.
    練習冊系列答案
    相關習題

    科目:初中數(shù)學 來源: 題型:

    7、若x1、x2是關于x的方程x2+bx-3b=0的兩個根,且x12+x22=7.那么b的值是( 。

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:

    若x1和x2是關于x的方程x2-(a-1)x-b2+b-1=0的兩個相等的實數(shù)根,則x1=x2=
     

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:

    若x1,x2是關于x的方程x2-kx+5(k-5)=0的兩個正實數(shù)根,且滿足2x1+x2=7,則實數(shù)k的范圍是( 。

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:閱讀理解

    先閱讀,再填空解答:
    方程x2-3x-4=0的根為x1=-1,x2=4,x1+x2=3,x1x2=-4;
    方程3x2+10x+8=0的根為x1=-2,x2=-
    4
    3
    ,x1+x2=-
    10
    3
    ,x1x2=
    8
    3

    (1)方程2x2+x-3=0的根是x1=
    -
    3
    2
    -
    3
    2
    ,x2=
    1
    1
    ,x1+x2=
    -
    1
    2
    -
    1
    2
    ,x1x2=
    -
    3
    2
    -
    3
    2

    (2)若x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個實數(shù)根,那么x1+x2,x1x2與系數(shù)a、b、c的關系是:x1+x2=
    -
    b
    a
    -
    b
    a
    ,x1x2=
    c
    a
    c
    a

    (3)當你輕松解決以上問題時,試一試下面這個問題:甲、乙兩同學解方程x2+px+q=0時,甲看錯了一次項系數(shù),得根2和7,乙看錯了常數(shù)項,得根1和-10,則原方程中的p、q到底是多少?你能寫出原來的方程嗎?

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:

    若x1和x2是關于x的方程x2-(a-1)x-
    14
    b2+b-1=0的兩個相等的實數(shù)根,則x1=x2=
    0
    0

    查看答案和解析>>

    同步練習冊答案