【題目】小李在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:
(1)他認(rèn)為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應(yīng)該成立.即如圖①,在中,
是
邊上的中線,若
,求證:
.
(2)如圖②,已知矩形,如果在矩形外存在一點(diǎn)
,使得
,求證:
.(可以直接用第(1)問的結(jié)論)
(3)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊
與
的數(shù)量關(guān)系.
【答案】(1)詳見解析;(2)詳見解析;(3)
【解析】
(1)利用等腰三角形的性質(zhì)和三角形內(nèi)角和即可得出結(jié)論;
(2)先判斷出OE=AC,即可得出OE=
BD,即可得出結(jié)論;
(3)先判斷出△ABE是底角是30°的等腰三角形,即可構(gòu)造直角三角形即可得出結(jié)論.
(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,
(2)如圖②,連接與
,交點(diǎn)為
,連接
四邊形
是矩形
(3)如圖3,過點(diǎn)做
于點(diǎn)
四邊形
是矩形
,
是等邊三角形
,
由(2)知,
在
中,
,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA是⊙O的半徑,點(diǎn)E為圓內(nèi)一點(diǎn),且OA⊥OE,AB是⊙O的切線,EB交⊙O于點(diǎn)F,BQ⊥AF于點(diǎn)Q.
(1)如圖1,求證:OE∥AB;
(2)如圖2,若AB=AO,求的值;
(3)如圖3,連接OF,∠EOF的平分線交射線AF于點(diǎn)P,若OA=2,cos∠PAB=,求OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,
,以
為直徑的
交
于點(diǎn)
,交
于點(diǎn)
,過點(diǎn)
作
于點(diǎn)
,交
的延長線于點(diǎn)
.
(1)求證:是
的切線;
(2)已知,
,求
和
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對某一個函數(shù)給出如下定義:若存在實(shí)數(shù),對于函數(shù)圖象上橫坐標(biāo)之差為1的任意兩點(diǎn)
,
,
都成立,則稱這個函數(shù)是限減函數(shù),在所有滿足條件的
中,其最大值稱為這個函數(shù)的限減系數(shù).例如,函數(shù)
,當(dāng)
取值
和
時,函數(shù)值分別為
,
,故
,因此函數(shù)
是限減函數(shù),它的限減系數(shù)為
.
(1)寫出函數(shù)的限減系數(shù);
(2),已知
(
)是限減函數(shù),且限減系數(shù)
,求
的取值范圍.
(3)已知函數(shù)的圖象上一點(diǎn)
,過點(diǎn)
作直線
垂直于
軸,將函數(shù)
的圖象在點(diǎn)
右側(cè)的部分關(guān)于直線
翻折,其余部分保持不變,得到一個新函數(shù)的圖象,如果這個新函數(shù)是限減函數(shù),且限減系數(shù)
,直接寫出
點(diǎn)橫坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)如圖1,在菱形中,已知
,
,拋物線
(
)經(jīng)過
,
,
三點(diǎn).
(1)點(diǎn)的坐標(biāo)為__________,點(diǎn)
的坐標(biāo)為__________;
(2)求拋物線的解析式.
(Ⅱ)如圖2,點(diǎn)是
的中點(diǎn),點(diǎn)
是
的中點(diǎn),直線
垂直
于點(diǎn)
,點(diǎn)
在直線
上.
(3)當(dāng)的值最小時,則點(diǎn)
的坐標(biāo)為____________;
(4)在(3)的條件下,連接、
、
得
,問在拋物線上是否存在點(diǎn)
,使得以
,
,
為頂點(diǎn)的三角形與
相似?若存在,請求出點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)
的圖象相交于點(diǎn)A(1,4)和點(diǎn)B(n,
).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017江西省,第12題,3分)已知點(diǎn)A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點(diǎn)D的邊AC上,將邊OA沿OD折疊,點(diǎn)A的對應(yīng)邊為A'.若點(diǎn)A'到矩形較長兩對邊的距離之比為1:3,則點(diǎn)A'的坐標(biāo)為______________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,
是對角線
上的一點(diǎn),點(diǎn)
在
的延長線上,
交
于
,
.
(1)求證:;
(2)連接,若
,求
;
(3)如圖2,若把正方形改為菱形
,其他條件不變,當(dāng)
時,猜想
與
的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,BC的延長線于⊙O的切線AF交于點(diǎn)F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com