【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是 .
【答案】 ﹣
【解析】解:如圖,連接BD.
∵四邊形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等邊三角形,
∵AB=2,
∴△ABD的高為 ,
∵扇形BEF的半徑為2,圓心角為60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
設AD、BE相交于點G,設BF、DC相交于點H,
在△ABG和△DBH中, ,
∴△ABG≌△DBH(ASA),
∴四邊形GBHD的面積等于△ABD的面積,
∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD= ﹣
×2×
=
﹣
.
故答案是: ﹣
.
根據(jù)菱形的性質(zhì)得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出答案。
科目:初中數(shù)學 來源: 題型:
【題目】汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關系:
x(元) | 3000 | 3200 | 3500 | 4000 |
y(輛) | 100 | 96 | 90 | 80 |
(1)觀察表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關知識,求按照表格呈現(xiàn)的規(guī)律,每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關系式.
(2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù)(輛) | 未租出的車輛數(shù)(輛) | ||
租出每輛車的月收益(元) | 所有未租出的車輛每月的維護費(元) |
(3)若你是該公司的經(jīng)理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是邊BC上一點,DE⊥AB,DF⊥AC,垂足分別是E,F,△AEF∽△ABC.
(1)求證:△AED≌△AFD;
(2)若BC=2AD,求證:四邊形AEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,∠EAD=∠BAF
(1)試說明:△CEF為等腰三角形;
(2)猜測CE與CF的和與□ABCD的周長有何關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個長為、寬為
的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成一個“回形”正方形(如圖2)
(1)觀察圖2請你寫出之間的等量關系是________;
(2)根據(jù)(1)中的結(jié)論,若,則
________;
(3)拓展應用:若,求
的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D,E分別在邊BC,AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 . (填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點B逆時針旋轉(zhuǎn)90°得到△DBE,DE的延長線恰好經(jīng)過AC的中點F,連接AD,CE.
(1)求證:AE=CE;
(2)若BC=,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點的縱坐標分別為3,1,反比例函數(shù)y= 的圖象經(jīng)過A,B兩點,則菱形ABCD的面積為( )
A.2
B.4
C.2
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在四邊形中,
,
、
分別是
、
的中點,連接
并延長,分別與
、
的延長線交于點
、
,證明:
.
請將證明的過程填寫完整:
證明:連接,取
的中點
,連接
、
.
是
的中點,
是
的中點,
________,
_______,同理:
_______,
_______,
,
,
又,
,
,
.
(2)運用上題方法解決下列問題:
問題一:如圖2,在四邊形中,
與
相交于點
,
,
、
分別是
、
的中點,連接
,分別交
、
于點
、
,請判斷
的形狀,并說明理由;
問題二:如圖3,在鈍角中,
,
點在
上,
、
分別是
、
的中點,連接
并延長,與
的延長線交于點
,連接
,若
,
是直角三角形且
,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com