【題目】如圖,已知A(﹣4,n),B(4﹣n,﹣4)是直線y=kx+b和雙曲線y=的兩個交點.
(1)求兩個函數的表達式;
(2)觀察圖象,直接寫出不等式kx+b﹣≥0的解集.
【答案】(1)y=﹣x﹣2,y=﹣(2)x≤﹣4或0<x≤2
【解析】
(1)根據反比例函數圖象上點的坐標特征得出m=﹣4n=(4﹣n)(﹣4),解得n=2,m=﹣8,得出雙曲線的解析式,把A、B點坐標代入直線解析式,根據待定系數法可求得直線解析式;
(2)不等式的解析集即為直線在雙曲線上方時對應的x的范圍,結合圖象可求得其解集.
(1)∵A(﹣4,n),B(4﹣n,﹣4)在雙曲線y=上,
∴m=﹣4n, ﹣4n=(4﹣n)(﹣4),
解得n=2,m=﹣8,
∴A(﹣4,2),B(2,﹣4),
代入y=kx+b得:,
解得,
∴直線解析式為y=﹣x﹣2,雙曲線的解析式為y=﹣;
(2)∵等式kx+b﹣≥0的解集即為直線在雙曲線上方對應的x的取值范圍,
∴不等式的解集為x≤﹣4或0<x≤2.
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠3=∠B,試說明DE∥BC.下面是部分推導過程,請你在括號內填上推導依據或內容:
證明:∵∠1+∠2=180°(已知)
∠1=∠4 ( )
∴∠2+∠4=180°(等量代換)
∵EH∥AB( )
∴∠B= ( )
∵∠3=∠B(已知)
∴∠3=∠EHC(等量代換)
∴DE∥BC ( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在四邊形ABCD中,∠A=∠C=90°.
(1)∠ABC+∠ADC= °;
(2)如圖①,若DE平分∠ADC,BF平分∠ABC的外角,請寫出DE與BF的位置關系,并證明;
(3)如圖②,若BE,DE分別四等分∠ABC、∠ADC的外角(即∠CDE=∠CDN,∠CBE=
∠CBM),試求∠E的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校實行學案式教學,需印制若干份教學學案.印刷廠有,甲、乙兩種收費方式,除按印數收取印刷費外,甲種方式還需收取制版費而乙種不需要,兩種印刷方式的費用y(元)與印刷份數x(份)之間的關系如圖所示.
(1)填空:甲種收費方式的函數關系式是__________,乙種收費方式的函數關系式是__________.
(2)該校某年級每次需印制100~450(含100和450)份學案,選擇哪種印刷方式較合算.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示的平面直角坐標系中,已知A(0,-3),B(4,1),C(-5,3)
(1) 求三角形ABC的面積;
(2) 點M是平面直角坐標系第一象限內的一動點,點M的縱坐標為3,三角形BCM的面積為6,求點M的坐標;
(3) 記BC與y軸的交點為D,求點D的坐標(寫出具體解答過程).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com