【題目】如圖,是
的直徑,點
在
上(點
不與
,
重合),直線
交過點
的切線于點
,過點
作
的切線
交
于點
.
(1)求證:;
(2)若,求
的值.
【答案】(1)見解析; (2) 的值為
.
【解析】
(1)證明:連接OD,如圖,利用切線長定理得到EB=ED,利用切線的性質(zhì)得OD⊥DE,AB⊥CB,再根據(jù)等角的余角相等得到∠CDE=∠ACB,則EC=ED,從而得到BE=CE;
(2)作OH⊥AD于H,如圖,設(shè)⊙O的半徑為r,先證明四邊形OBED為正方形得DE=CE=r,再利用△AOD和△CDE都為等腰直角三角形得到OH=DH= r,CD=
r,接著根據(jù)勾股定理計算出OC=
r,然后根據(jù)正弦的定義求解.
解:(1)連接,如圖.
為
的切線,.
∴,
,.
,
,
.
.
.
(2)如圖,作于點
.
設(shè)的半徑為
,
,
∴四邊形為矩形,
又,
∴四邊形為正方形
.
易得和
都為等腰直角三角形.
在中,
在中,
即的值為
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在扇形中,
,半徑
,點P為
上任一點(不與A、O重合).
(1)如圖①,Q是上一點,若
,求證:
.
(2)如圖②,將扇形沿折疊,得到O的對稱點
.
①若點落在
上,求
的長;
②當(dāng)與扇形
所在的圓相切時,求折痕的長.(注:本題結(jié)果不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,拋物線
分別交
軸正半軸于點
,交
軸負(fù)半軸于點
,與
軸負(fù)半軸交于點
,且
.
(1)如圖1,求的值;
(2)如圖,
是第一象限拋物線上的點,連
,過點
作
軸,交
的延長線于點
,連接
交
于點
,若
,求點
的坐標(biāo)以及
的值;
(3)如圖3,在(2)的條件下,連接,
是第一象限拋物線上的點(點
與點
不重合),過點
作
的垂線,交
軸于點
,點
在
軸上(點
在點
的左側(cè)),
,點
在直線
上,連接
、
.若
,
,求點
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,
,
為
邊上的高,
分別為
邊上的點,將
分別沿
折疊,使點
落在
的延長線上點
處,點
落在點
處,連接
,若
,則
的長是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個二次函數(shù)的圖象經(jīng)過點A(0,1),它的頂點為B(1,3).
(1)求這個二次函數(shù)的表達(dá)式;
(2)過點A作AC⊥AB交拋物線于點C,點P是直線AC上方拋物線上的一點,當(dāng)△APC面積最大時,求點P的坐標(biāo)和△APC的面積最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】人字折疊梯完全打開后如圖1所示,B,C是折疊梯的兩個著地點,D是折疊梯最高級踏板的固定點.圖2是它的示意圖,AB=AC,BD=140cm,∠BAC=40°,求點D離地面的高度DE.(結(jié)果精確到0.1cm;參考數(shù)據(jù)sin70°≈0. 94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售A,B兩款保溫杯,已知B款保溫杯的銷售單價比A款保溫杯多10元,用480元購買B款保溫杯的數(shù)量與用360元購買A款保溫杯的數(shù)量相同.
(1)A,B兩款保溫杯的銷售單價各是多少元?
(2)由于需求量大,A,B兩款保溫杯很快售完,該超市計劃再次購進(jìn)這兩款保溫杯共120個,且A款保溫杯的數(shù)量不少于B保溫杯的2倍,A保溫杯的售價不變,B款保溫杯的銷售單價降低10%,兩款保溫杯的進(jìn)價每個均為20元,應(yīng)如何進(jìn)貨才能使這批保溫杯的銷售利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年3月,我國湖北省A、B兩市遭受嚴(yán)重新冠肺炎影響,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用分別為每噸15元和30元,設(shè)從D市運往B市的救災(zāi)物資為x噸.
(1)設(shè)C、D兩市的總運費為w元,求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)經(jīng)過當(dāng)?shù)卣拇罅χС郑瑥?/span>D市到B市的運輸時間縮短了,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,連接AC,CE⊥AB于點E,D是直徑AB延長線上一點,且∠BCE=∠BCD.
(1)求證:CD是⊙O的切線;
(2)若AD=8,=
,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com