亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    閱讀材料:如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ABP+S△ACP=S△ABC,即:AB•r1+AC•r2=AB•h,∴r1+r2=h
    (1)理解與應用
    如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在    三角形內任一點”,即:已知邊長為2的等邊△ABC內任意一點P到各邊的距離分別為r1,r2,r3,試證明:
    (2)類比與推理
    邊長為2的正方形內任意一點到各邊的距離的和等于______;
    (3)拓展與延伸
    若邊長為2的正n邊形A1A2…An內部任意一點P到各邊的距離為r1,r2,…rn,請問r1+r2+…rn是否為定值(用含n的式子表示),如果是,請合理猜測出這個定值.

    【答案】分析:(1)由條件可以求出邊長為2的等邊三角形的高為,連接PA,PB,PC,仿照面積的割補法,得出S△PBC+S△PAC+S△PAB=S△ABC,而這幾個三角形的底相等,故化簡后可得出高的關系.
    (2)如圖正方形過正方形內的任一點P向四邊做垂線就可以求出到正方形四邊的距離和為正方形邊長的2倍,從而得出結論.
    (3)問題轉化為正n邊形時,根據(jù)正n邊形計算面積的方法,從中心向各頂點連線,可得出n個全等的等腰三角形,用邊長2為底,邊心距為高,可求正n邊形的面積,然后由P點向正n多邊形,又可把正n邊形分割成n個三角形,以邊長為底,以r1、r2、…、rn為高表示面積,列出面積的等式,可求證r1+r2+…+rn為定值.
    解答:解:(1)分別連接AP,BP,CP,作AD⊥BC于D,
    ∴∠ADB=90°,
    ∵△ABC是等邊三角形,
    ∴AB=BC=AC=2,∠ABC=60°,
    ∴∠BAD=30°,
    ∴BD=1,在Rt△ABD中,由勾股定理,得
    ∴AD=
    ∵S△ABP+S△BCP+S△ACP=S△ABC
    AB•r1+BC•r2+AC•r3=BC×AD,
    ∵BC=AC=AB,
    ∴r1+r2+r3=AD.
    ∴r1+r2+r3=

    (2)如圖2,∵四邊形ABCD是正方形,
    ∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=2.
    ∵PE⊥AB,PF⊥BC,PG⊥DC,PH⊥AD,
    ∴四邊形PEBF是矩形,四邊形PFCG是矩形,四邊形PGDH是矩形,四邊形PHAE是矩形,
    ∴PE=AH,PF=BE,PG=HD,PH=AE,
    ∴PE+PF+PG+PH=AH+BE+HD+AE=AD+AB=4.
    故答案為4.

    (3)設正n邊形的邊心距為r,且正n邊形的邊長為2,
    ∴S正n邊形=.r=,
    ∵S正n邊形=×2×r1+×2×r2+×2×r1+…+×2×rn,
    ×2×r1+×2×r2+×2×r1+…+×2×rn=×n,
    ∴r1+r2+…+rn=nr=(為定值).

    點評:本題主要考查了等腰三角形的性質,等邊三角形的性質,正方形的性質及利用面積分割法,求線段之間的關系,充分體現(xiàn)了面積法解題的作用.
    練習冊系列答案
    相關習題

    科目:初中數(shù)學 來源: 題型:閱讀理解

    25、閱讀材料:
    如圖(一),在已建立直角坐標系的方格紙中,圖形①的頂點為A、B、C,要將它變換到圖④(變換過程中圖形的頂點必須在格點上,且不能超出方格紙的邊界).
    例如:將圖形①作如下變換(如圖二).
    第一步:平移,使點C(6,6)移至點(4,3),得圖②;
    第二步:旋轉,繞著點(4,3)旋轉180°,得圖③;
    第三步:平移,使點(4,3)移至點O(0,0),得圖④.
    則圖形①被變換到了圖④.

    解決問題:
    (1)在上述變化過程中A點的坐標依次為:
    (4,6)→(
    2
    3
    )→(
    6
    ,
    3
    )→(
    2
    ,
    0

    (2)如圖(三),仿照例題格式,在直角坐標系的方格紙中將△DEF經(jīng)過平移、旋轉、翻折等變換得到△OPQ.(寫出變換步驟,并畫出相應的圖形)

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:閱讀理解

    精英家教網(wǎng)閱讀材料:
    如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:S△ABC=
    12
    ah
    ,即三角形面積等于水平寬與鉛垂高乘積的一半.
    解答下列問題:精英家教網(wǎng)
    如圖2,拋物線頂點坐標為點C(-1,-4),交x軸于點A(-3,0),交y軸于點B.
    (1)求拋物線和直線AB的解析式;
    (2)點P是拋物線(在第三象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
    (3)是否存在一點P,使S△PAB=S△CAB,若存在,求出P點的坐標;若不存在,請說明理由.

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:閱讀理解

    (2013•益陽)閱讀材料:如圖1,在平面直角坐標系中,A、B兩點的坐標分別為A(x1,y1),B(x2,y2),AB中點P的坐標為(xp,yp).由xp-x1=x2-xp,得xp=
    x1+x2
    2
    ,同理yp=
    y1+y2
    2
    ,所以AB的中點坐標為(
    x1+x2
    2
    y1+y2
    2
    )
    .由勾股定理得AB2=
    .
    x2-x1
      
    .
    2
    +
    .
    y2-y1
      
    .
    2
    ,所以A、B兩點間的距離公式為AB=
    (x2-x1)2+(y2-y1)2

    注:上述公式對A、B在平面直角坐標系中其它位置也成立.
    解答下列問題:
    如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點,P為AB的中點,過P作x軸的垂線交拋物線于點C.
    (1)求A、B兩點的坐標及C點的坐標;
    (2)連結AB、AC,求證△ABC為直角三角形;
    (3)將直線l平移到C點時得到直線l′,求兩直線l與l′的距離.

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:

    閱讀材料:如圖,AB=AC,BD=CD,則可證得AD平分∠BAC,據(jù)此我們引出了“角平分線”的尺規(guī)作法.

    問題:如圖,AD=AE,AB=AC,也可證得AP平分∠BAC,據(jù)此我們能否引出了“角平分線”的第二種尺規(guī)作法呢?請在圖中嘗試著畫出∠α的平分線.

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:閱讀理解

    閱讀材料:

    如圖1,AB、CD交于點O,我們把△AOD和△BOC叫做對頂三角形.
    結論:若△AOD和△BOC是對頂三角形,則∠A+∠D=∠B+∠C.
    結論應用舉例:
    如圖2:求五角星的五個內角之和,即∠A+∠B+∠ACE+∠ADB+∠E的度數(shù).
    解:連接CD,由對頂三角形的性質得:∠B+∠E=∠1+∠2,
    在△ACD中,∵∠A+∠ACD+∠ADC=180°,
    即∠A+∠3+∠1+∠2+∠4=180°,
    ∴∠A+∠ACE+∠B+∠E+ADB=180°
    即五角星的五個內角之和為180°.
    解決問題:
    (1)如圖①,∠A+∠B+∠C+∠D+∠E+∠F=
    360°
    360°
    ;
    (2)如圖②,∠A+∠B+∠C+∠D+∠E+∠F+∠G=
    540°
    540°
    ;
    (3)如圖③,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=
    720°
    720°

    (4)如圖④,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=
    1080°
    1080°
    ;
    請你從圖③或圖④中任選一個,寫出你的計算過程.

    查看答案和解析>>

    同步練習冊答案