亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點,MBC邊上的動點M不與B,C重合,CNAB交于點N,連接OM,ON下列五個結(jié)論:;;;,則的最小值是,其中正確結(jié)論的個數(shù)是  

    A. 2 B. 3 C. 4 D. 5

    【答案】D

    【解析】

    根據(jù)正方形的性質(zhì),可判定CNB≌△DMC, △OCM≌△OBN, △CON≌△DOM,OMN∽△OAD,根據(jù)全等三角形的性質(zhì)以及勾股定理可進行求解.

    因為正方形ABCD,CD=BC, BCD=90°,

    所以∠BCN+∠DCN=90°,

    因為CN⊥DM,

    所以∠CDM+∠DCN=90°,

    所以∠BCN=∠CDM,

    又因為∠CBN=∠DCM=90°,

    所以CNB≌△DMC,正確,

    根據(jù)CNB≌△DMC,可得CM=BN,

    又因為∠OCM=∠OBN=45°,OC=OB,

    所以OCM≌△OBN,

    所以OM=ON, ∠COM=∠BON,

    所以∠DOC+∠COM=∠COB+∠BPN,∠DOM=∠CON,

    又因為DO=CO,

    所以OCN≌DOM,正確,

    因為∠BON+∠BOM=∠COM+∠BOM=90°,

    所以∠MON=90°,MON是等腰直角三角形,

    又因為AOD是等腰直角三角形,

    所以OMN∽△OAD,正確,

    因為AB=BC,CM=BN,

    所以BM=AN,

    又因為Rt△BMN,BM2+BN2=MN2,

    所以AN2+CM2=MN2,正確,

    OCM≌△OBN,

    所以四邊形BMON的面積=△BOC的面積=1,即四邊形BMON的面積是定值1,

    當(dāng)MNB的面積最大時, △MNO的面積最小,

    設(shè)BN=x=CM,BM=2-x,

    所以MNB的面積=,

    當(dāng)x=1, △MNB的面積有最大值

    此時OMN的面積最小值是,正確,

    故選D.

    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】如圖,在ABCD中,AM,CN分別是∠BAD和∠BCD的平分線,添加一個條件,仍無法判斷四邊形AMCN為菱形的是(

    A.AM=AN B.MN⊥AC

    C.MN是∠AMC的平分線 D.∠BAD=120°

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】如圖,在真角坐標(biāo)系中,矩形0ABC的頂點A,C在坐標(biāo)軸上,點B(4,2);過點D(0,3)和E(6,0)的直線分別與AB、BC交于點M、N

    (1)求直線DE的函數(shù)表達式和點MN的坐標(biāo);

    (2)若函數(shù)yk0,k為常數(shù))經(jīng)過點M,求該函數(shù)的表達式,并判定點N是否在該函數(shù)的圖象上:

    (3)求△OMN的面積S

    (4)若函教yk0,k為常數(shù))的圖象與△BMN沒有交點,清楚直接寫出k的取值范圈,不需解答過程.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】已知一次函數(shù)y=2m+3x+m-1,

    1)若函數(shù)圖象經(jīng)過原點,求m的值;

    2)若函數(shù)圖象在y軸上的截距為-3,求m的值;

    3)若該函數(shù)的值y隨自變量x的增大而減小,求m的取值范圍;

    4)該函數(shù)圖象不經(jīng)過第二象限,求m的取值范圍;

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】已知:如圖,BDABC的角平分線,且BD=BCEBD延長線上的一點,BE=BA,過EEFAB,F為垂足.下列結(jié)論:①△ABDEBC;②∠BCE+BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是(   )

    A.①②③B.①③④C.①②④D.①②③④

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】某縣某包裝生產(chǎn)企業(yè)承接了一批上海世博會的禮品盒制作業(yè)務(wù),為了確保質(zhì)量,該企業(yè)進行試生產(chǎn).他們購得規(guī)格是的標(biāo)準板材作為原材料,每張標(biāo)準板材再按照裁法一或裁法二裁下型與型兩種板材.如圖甲所示.(單位

    1)列出方程(組),求出圖甲中的值;

    2)在試生產(chǎn)階段,若將625張標(biāo)準板材用裁法一裁剪,125張標(biāo)準板材用裁法二裁剪,再將得到的型與型板材做側(cè)面和底面,剛好可以做成圖乙的豎式與橫式兩種無蓋禮品盒.求可以做豎式與橫式兩種無蓋禮品盒各多少個?

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】如圖,在ABC中,ACB=90°,O是邊AC上一點,以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點E,D,在BC的延長線上取點F,使得BF=EF,EF與AC交于點G.

    (1)試判斷直線EF與O的位置關(guān)系,并說明理由;

    (2)若OA=2,A=30°,求圖中陰影部分的面積.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】已知:如圖,AB=AC,AE=AF,連結(jié)BFCE,交于O,連結(jié)AO.求證:

    1B=∠C

    2AO平分BAC

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】為加大環(huán)境保護力度,某市在郊區(qū)新建了、兩個垃圾處理廠來處理甲、乙兩個垃圾中轉(zhuǎn)站的垃圾.已知甲中轉(zhuǎn)站每日要輸出100噸垃圾,乙中轉(zhuǎn)站每日要輸出80噸垃圾,垃圾處理廠日處理垃圾量為70噸,垃圾處理廠日處理垃圾量為110.甲、乙兩中轉(zhuǎn)站運往、兩處理廠的垃圾量和運費如下表.

    垃圾量(噸)

    運費(元/噸)

    甲中轉(zhuǎn)站

    乙中轉(zhuǎn)站

    甲中轉(zhuǎn)站

    乙中轉(zhuǎn)站

    垃圾處理廠

    ______

    240

    180

    垃圾處理廠

    ______

    250

    160

    1)設(shè)甲中轉(zhuǎn)站運往垃圾處理廠的垃圾量為噸,根據(jù)信息填表.

    2)設(shè)總運費為元,求總運費(元)關(guān)于(噸)的函數(shù)關(guān)系式,并寫出的取值范圍.

    3)當(dāng)甲、乙兩中轉(zhuǎn)站各運往兩處理廠多少噸垃圾時,總運費最。孔钍〉目傔\費是多少?

    查看答案和解析>>

    同步練習(xí)冊答案