亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    【題目】如圖,點(diǎn)A(1,4)、B(2,a)在函數(shù)y=(x>0)的圖象上,直線ABx軸相交于點(diǎn)C,ADx軸于點(diǎn)D.

    (1)m=  ;

    (2)求點(diǎn)C的坐標(biāo);

    (3)在x軸上是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與ACD相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由.

    【答案】(1)4;(2)C的坐標(biāo)為(3,0);(3)(﹣2,0).

    【解析】試題分析:(1)把點(diǎn)代入求值.(2)先利用反比例函數(shù)求出A,B,點(diǎn)坐標(biāo),再利用待定系數(shù)法求直線方程.(3)假設(shè)存在E點(diǎn),因?yàn)?/span>ACD是直角三角形,假設(shè)ABE也是直角三角形,利用勾股定理分別計(jì)算A,B,C,是直角時(shí)AB長(zhǎng)度,均與已知矛盾,所以不存在.

    試題解析:

    解:(1)∵點(diǎn)A(1,4)在反比例函數(shù)y=(x>0)的圖象上,

    m=1×4=4,

    故答案為:4.

    (2)∵點(diǎn)B(2,a)在反比例函數(shù)y=的圖象上,

    a==2,

    B(2,2).

    設(shè)過點(diǎn)AB的直線的解析式為y=kx+b,

    ,解得:,

    過點(diǎn)A、B的直線的解析式為y=﹣2x+6.

    當(dāng)y=0時(shí),有﹣2x+6=0,

    解得:x=3,

    點(diǎn)C的坐標(biāo)為(3,0).

    3)假設(shè)存在,設(shè)點(diǎn)E的坐標(biāo)為(n,0).

    當(dāng)ABE=90°時(shí)(如圖1所示),

    A(1,4),B(2,2),C(3,0),

    BAC的中點(diǎn),

    EB垂直平分AC,EA=EC=n+3.

    由勾股定理得:AD2+DE2=AE2,即42+(x+1)2=(x+3)2,

    解得:x=﹣2,

    此時(shí)點(diǎn)E的坐標(biāo)為(﹣2,0);

    當(dāng)BAE=90°時(shí),ABE>∠ACD

    EBAACD不可能相似;

    當(dāng)AEB=90°時(shí),A(1,4),B(2,2),

    AB=,2>,

    AB為直徑作圓與x軸無(wú)交點(diǎn)(如圖3),

    不存在AEB=90°.

    綜上可知:在x軸上存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與ACD相似,點(diǎn)E的坐標(biāo)為(﹣2,0).

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】對(duì)于某一函數(shù)給出如下定義:若存在實(shí)數(shù)p,當(dāng)其自變量的值為p時(shí),其函數(shù)值等于p,則稱p為這個(gè)函數(shù)的不變值.在函數(shù)存在不變值時(shí),該函數(shù)的最大不變值與最小不變值之差q稱為這個(gè)函數(shù)的不變長(zhǎng)度.特別地,當(dāng)函數(shù)只有一個(gè)不變值時(shí),其不變長(zhǎng)度q為零.例如:下圖中的函數(shù)有0,1兩個(gè)不變值,其不變長(zhǎng)度q等于1.

    (1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長(zhǎng)度;

    (2)函數(shù)y=2x2-bx.

    ①若其不變長(zhǎng)度為零,求b的值;

    ②若1≤b≤3,求其不變長(zhǎng)度q的取值范圍;

    (3) 記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1G2兩部分組成,若其不變長(zhǎng)度q滿足0≤q≤3,m的取值范圍為 .

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】如圖,在正方形ABCD中,AD=2,E是AB的中點(diǎn),將△BEC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)E落在CB的延長(zhǎng)線上點(diǎn)F處,點(diǎn)C落在點(diǎn)A處.再將線段AF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得線段FG,連結(jié)EF、CG.

    (1)求證:EFCG;

    (2)求點(diǎn)C、點(diǎn)A在旋轉(zhuǎn)過程中形成的、與線段CG所圍成的陰影部分的面積.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為(

    A.2B.2.5或3.5

    C.3.5或4.5D.2或3.5或4.5

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根x1,x2

    1)求k的取值范圍;

    2)如果,且k為整數(shù),求k的值.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為(

    A.2B.2.5或3.5

    C.3.5或4.5D.2或3.5或4.5

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】如圖,已知ABC中,B=C,AB=AC=12cm,BC=8cm,點(diǎn)DAB的中點(diǎn)如果點(diǎn)P在線段BC上以2cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA點(diǎn)CA點(diǎn)運(yùn)動(dòng)

    1若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,BPDCQP是否全等?請(qǐng)說(shuō)明理由

    2若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPDCQP全等?

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】學(xué)校為數(shù)學(xué)競(jìng)賽準(zhǔn)備了若干鋼筆和筆記本(每支鋼筆的價(jià)格相同,每本筆記本的價(jià)格相同)作為競(jìng)賽的獎(jiǎng)品.若購(gòu)買2支鋼筆和3本筆記本需62元,購(gòu)買5支鋼筆和1本筆記本需90元.

    (1)購(gòu)買一支鋼筆和一本筆記本各需多少錢?

    (2)若學(xué)校準(zhǔn)備購(gòu)買鋼筆和筆記本共80件獎(jiǎng)品,并且購(gòu)買的費(fèi)用不超過1100元,則學(xué)校最多可以購(gòu)買多少支鋼筆?

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    【題目】如圖,在平行四邊形ABCD中,過點(diǎn)AAE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B

    1)求證:△ADF∽△DEC;

    2)若AB=8AD=,AE=6,求AF的長(zhǎng).

    查看答案和解析>>

    同步練習(xí)冊(cè)答案