亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    27、小明學習了垂徑定理,做了下面的探究,請根據(jù)題目要求幫小明完成探究.
    (1)更換定理的題設和結論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點,直線CD⊥AB于點E,則AE=BE.請證明此結論;
    (2)從圓上任意一點出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點,直線CD⊥PA于點E,則AE=PE+PB.可以通過延長DB、AP相交于點F,再連接AD證明結論成立.請寫出證明過程;
    (3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點,直線CD⊥PA于點E,則AE,PE與PB之間存在怎樣的數(shù)量關系?寫出結論,不必證明.
    分析:(1)連接AD,BD,易證△ADB為等腰三角形,根據(jù)等腰三角形三線合一這一性質,可以證得AE=BE.
    (2)根據(jù)圓內接四邊形的性質,先∠CDA=∠CDF,再證△AFD為等腰三角形,進一步證得PB=PF,從而證得結論.
    (3)根據(jù)圓內接四邊形的性質,證得∠BAC=∠ABC,因為△ACB為等腰三角形,所以PB=PF,進而求得AE=PE-PB.
    解答:證明:(1)連接AD,BD,
    ∵C是劣弧AB的中點,
    ∴∠CDA=∠CDB,
    ∴△ADB為等腰三角形,
    ∵CD⊥AB,
    ∴AE=BE;

    (2)延長DB、AP相交于點F,再連接AD,
    ∵ADBP是圓內接四邊形,
    ∴∠PBF=∠PAD,
    ∵C是劣弧AB的中點,
    ∴∠CDA=∠CDF,
    ∵CD⊥PA,
    ∴△AFD為等腰三角形,
    ∴∠F=∠A,AE=EF,
    ∴∠PBF=∠F,
    ∴PB=PF,
    ∴AE=PE+PB

    (3)AE=PE-PB.
    連接AD,BD,AB,BD,DB、AP相交于點F,
    ∵弧AC=弧BC,
    ∴∠ADC=∠BDC,
    ∵CD⊥AP,
    ∴∠DEA=∠DEF,∠ADE=∠FED,
    ∵DE=DE,
    ∴△DAE≌△DFE,
    ∴AD=DF,AE=EF,
    ∴∠DAF=∠DFA,
    ∴∠DFA=∠PFB,∠PBD=∠DAP,
    ∴∠PFB=∠PBF,
    ∴PF=PB,
    ∴AE=PE-PB;
    點評:此題主要考查了垂徑定理及其推論,垂徑定理-在5個條件中,1.平分弦所對的一條。2.平分弦所對的另一條;3.平分弦;4.垂直于弦;5.經(jīng)過圓心(或者說直徑).只要具備任意兩個條件,就可以推出其他的三個.
    練習冊系列答案
    相關習題

    科目:初中數(shù)學 來源:2011-2012學年廣東省廣州市番禺區(qū)鐘村中學九年級(上)數(shù)學競賽試卷(解析版) 題型:解答題

    小明學習了垂徑定理,做了下面的探究,請根據(jù)題目要求幫小明完成探究.
    (1)更換定理的題設和結論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點,直線CD⊥AB于點E,則AE=BE.請證明此結論;
    (2)從圓上任意一點出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點,直線CD⊥PA于點E,則AE=PE+PB.可以通過延長DB、AP相交于點F,再連接AD證明結論成立.請寫出證明過程;
    (3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點,直線CD⊥PA于點E,則AE,PE與PB之間存在怎樣的數(shù)量關系?寫出結論,不必證明.

    查看答案和解析>>

    科目:初中數(shù)學 來源:2011-2012學年貴州省遵義市遵義縣南鋒中學九年級(上)月考數(shù)學試卷(解析版) 題型:解答題

    小明學習了垂徑定理,做了下面的探究,請根據(jù)題目要求幫小明完成探究.
    (1)更換定理的題設和結論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點,直線CD⊥AB于點E,則AE=BE.請證明此結論;
    (2)從圓上任意一點出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點,直線CD⊥PA于點E,則AE=PE+PB.可以通過延長DB、AP相交于點F,再連接AD證明結論成立.請寫出證明過程;
    (3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點,直線CD⊥PA于點E,則AE,PE與PB之間存在怎樣的數(shù)量關系?寫出結論,不必證明.

    查看答案和解析>>

    科目:初中數(shù)學 來源:2009-2010學年貴州省遵義市桐梓縣九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

    小明學習了垂徑定理,做了下面的探究,請根據(jù)題目要求幫小明完成探究.
    (1)更換定理的題設和結論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點,直線CD⊥AB于點E,則AE=BE.請證明此結論;
    (2)從圓上任意一點出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點,直線CD⊥PA于點E,則AE=PE+PB.可以通過延長DB、AP相交于點F,再連接AD證明結論成立.請寫出證明過程;
    (3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點,直線CD⊥PA于點E,則AE,PE與PB之間存在怎樣的數(shù)量關系?寫出結論,不必證明.

    查看答案和解析>>

    科目:初中數(shù)學 來源:2012年湖北省咸寧市中考數(shù)學模擬試卷(十一)(解析版) 題型:解答題

    小明學習了垂徑定理,做了下面的探究,請根據(jù)題目要求幫小明完成探究.
    (1)更換定理的題設和結論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點,直線CD⊥AB于點E,則AE=BE.請證明此結論;
    (2)從圓上任意一點出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點,直線CD⊥PA于點E,則AE=PE+PB.可以通過延長DB、AP相交于點F,再連接AD證明結論成立.請寫出證明過程;
    (3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點,直線CD⊥PA于點E,則AE,PE與PB之間存在怎樣的數(shù)量關系?寫出結論,不必證明.

    查看答案和解析>>

    同步練習冊答案