亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    27、情境觀察
    將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.
    觀察圖2可知:與BC相等的線段是
    AD
    ,∠CAC′=
    90
    °.

    問(wèn)題探究
    如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

    拓展延伸
    如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由.
    分析:①觀察圖形即可發(fā)現(xiàn)△ABC≌△AC′D,即可解題;
    ②易證△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,F(xiàn)Q=AG,即可解題;
    ③過(guò)點(diǎn)E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.根據(jù)全等三角形的判定和性質(zhì)即可解題.
    解答:解:①觀察圖形即可發(fā)現(xiàn)△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,
    ∴∠CAC′=180°-∠C′AD-∠CAB=90°;
    故答案為:AD,90.

    ②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,
    ∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,
    又∵AF=AC,
    ∴△AFQ≌△CAG,
    ∴FQ=AG,
    同理EP=AG,
    ∴FQ=EP.

    ③HE=HF.
    理由:過(guò)點(diǎn)E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.
    ∵四邊形ABME是矩形,
    ∴∠BAE=90°,
    ∴∠BAG+∠EAP=90°.AG⊥BC,
    ∴∠BAG+∠ABG=90°,
    ∴∠ABG=∠EAP.
    ∵∠AGB=∠EPA=90°,
    ∴△ABG∽△EAP,
    ∴AG:EP=AB:EA.
    同理△ACG∽△FAQ,
    ∴AG:FQ=AC:FA.
    ∵AB=k•AE,AC=k•AF,
    ∴AB:EA=AC:FA=k,
    ∴AG:EP=AG:FQ.
    ∴EP=FQ.
    ∵∠EHP=∠FHQ,
    ∴Rt△EPH≌Rt△FQH.
    ∴HE=HF.
    點(diǎn)評(píng):本題考查了全等三角形的證明,考查了全等三角形對(duì)應(yīng)邊相等的性質(zhì),考查了三角形內(nèi)角和為180°的性質(zhì),考查了等腰三角形腰長(zhǎng)相等的性質(zhì),本題中求證△AFQ≌△CAG是解題的關(guān)鍵.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    情境觀察
    將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.
    觀察圖2可知:與BC相等的線段是
    AD或A′D
    AD或A′D
    ,∠CAC′=
    90
    90
    °.

    問(wèn)題探究
    如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

     

    1.情境觀察 將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是        ,∠CAC′=          °.

    2.問(wèn)題探究 如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

    3.拓展延伸  如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由

     

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江省椒江區(qū)九年級(jí)二模數(shù)學(xué)試卷(帶解析) 題型:解答題


    【小題1】情境觀察 將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是        ,∠CAC′=          °.

    【小題2】問(wèn)題探究 如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

    【小題3】拓展延伸 如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H. 若AB=" k" AE,AC=" k" AF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源:2012屆湖南省九年級(jí)下學(xué)期第一次月考考試數(shù)學(xué)卷 題型:選擇題

    (本題滿分10分)

    情境觀察

    將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是   ▲   ,∠CAC′=   ▲   °.

     

     

     

     

     

     


    問(wèn)題探究

    如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分

    別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等

    腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為

    P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

     

    拓展延伸

    如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由.

     

    查看答案和解析>>

    同步練習(xí)冊(cè)答案