亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    如圖,半圓O的直徑AB=12cm,射線BM從與線段AB重合的位置起,以每秒6°的旋轉(zhuǎn)速度繞B點(diǎn)按順時(shí)針方向旋轉(zhuǎn)至BP的位置,BP交半圓于E,設(shè)旋轉(zhuǎn)時(shí)間為ts(0<t<15),
    (1)求E點(diǎn)在圓弧上的運(yùn)動(dòng)速度(即每秒走過的弧長),結(jié)果保留π.
    (2)設(shè)點(diǎn)C始終為的中點(diǎn),過C作CD⊥AB于D,AE交CD、CB分別于G、F,過F作FN∥CD,過C作圓的切線交FN于N.
    求證:①CN∥AE;
    ②四邊形CGFN為菱形;
    ③是否存在這樣的t值,使BE2=CF•CB?若存在,求t值;若不存在,說明理由.

    【答案】分析:(1)根據(jù)弧長計(jì)算公式直接求出即可;
    (2)①利用圓周角定理和平行線的判定以及弦切角定理得出即可;
    ②利用平行四邊形的判定以及菱形判定得出即可;
    ③利用相似三角形的判定得出△ACF∽△BCA,再利用等腰三角形的知識得出當(dāng)t=10s時(shí),∠AOC=∠AOE=60°,即可得出答案.
    解答:(1)解:∵射線BM從與線段AB重合的位置起,以每秒6°的旋轉(zhuǎn)速度繞B點(diǎn)按順時(shí)針方向旋轉(zhuǎn)至BP的位置,
    ∴B一秒P轉(zhuǎn)動(dòng)的圓心角為12°,
    ∴每秒走過的弧長為:=πcm∕s;

    (2)①證明:如圖所示:
    ∵點(diǎn)C始終為的中點(diǎn),過C作CD⊥AB于D,AE交CD、CB分別于G、F,過F作FN∥CD,過C作圓的切線交FN于N.
    ∴∠ACD+∠CAG=∠CGF,∠ABC=∠GAC=∠ACG,
    ∠MCA=∠ABC,
    ∴∠MCA+∠ACG=∠ACD+∠CAG,
    ∴CN∥AE;
    ②證明:∵FN∥CD,CN∥AE;
    ∴四邊形CGFN是平行四邊形,
    ∵∠GCF=90°-∠ACG,
    ∠CFG=∠EFB=90°-∠EBC,
    ∵∠EBC=∠ACD,
    ∴∠GCF=∠GFC,
    ∴CG=GF,
    ∴平行四邊形CGFN為菱形;
    ③解:連接EO,CO.
    存在,理由如下:
    ∵∠ACF=∠ACB,
    ∠CAF=∠CBA,
    ∴△ACF∽△BCA,
    ,
    ∴AC2=BC•CF,
    ∵當(dāng)t=10s時(shí),∠AOC=∠AOE=60°,
    ∴∠BOE=60°,
    ∴△AOC,△BOE都是等邊三角形,且此時(shí)全等,
    ∴AC=BE,
    ∴BE2=BC•CF.
    點(diǎn)評:此題主要考查了切線的性質(zhì)定理以及圓周角定理、相似三角形的判定、菱形的判定等知識,根據(jù)已知得出角之間等量關(guān)系是解決問題的關(guān)鍵.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,半圓O的直徑AD=12cm,AB,BC,CD分別與半圓O切于點(diǎn)A,E,D.
    (1)設(shè)AB=x,CD=y,求y與x之間的函數(shù)關(guān)系式;
    (2)如果CD=6,判斷四邊形ABCD的形狀;
    (3)如果AB=4,求圖中陰影部分的面積.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,半圓O的直徑AD=12cm,AB、BC、CD分別與半圓O切于點(diǎn)A、E、D.
    (1)線段AB、CD與BC之間有什么關(guān)系?并說明理由;
    (2)設(shè)AB=x,CD=y,求y與x之間的函數(shù)關(guān)系式;
    (3)如果AB=4,求圖中陰影部分的面積.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,半圓O的直徑AB=12cm,射線BM從與線段AB重合的位置起,以每秒6°的旋轉(zhuǎn)速度繞B點(diǎn)按順時(shí)針方向旋轉(zhuǎn)至BP的位置,BP交半圓于E,設(shè)旋轉(zhuǎn)時(shí)間為ts(0<t<15),
    (1)求E點(diǎn)在圓弧上的運(yùn)動(dòng)速度(即每秒走過的弧長),結(jié)果保留π.
    (2)設(shè)點(diǎn)C始終為
    AE
    的中點(diǎn),過C作CD⊥AB于D,AE交CD、CB分別于G、F,過F作F精英家教網(wǎng)N∥CD,過C作圓的切線交FN于N.
    求證:①CN∥AE;
    ②四邊形CGFN為菱形;
    ③是否存在這樣的t值,使BE2=CF•CB?若存在,求t值;若不存在,說明理由.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,半圓O的直徑為6cm,∠BAC=30°,則陰影部分的面積是( 。

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,半圓O的直徑AB=20,將半圓O繞點(diǎn)B順針旋轉(zhuǎn)45°得到半圓O′,與AB交于點(diǎn)P.
    (1)求AP的長.
    (2)求圖中陰影部分的面積(結(jié)果保留π).

    查看答案和解析>>

    同步練習(xí)冊答案