亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    如圖,直線軸、軸分別交于點B,A,且A,B兩點的坐標分別為A,B.

    (1)請求出直線的函數(shù)解析式;

    在x軸上是否存在這樣的點C,使△ABC為等腰三角形?請求出點C的坐標(不需要具體過程),并在坐標系中標出點C的大致位置;

    解:(1)設(shè)直線的函數(shù)解析式為y=kx+b;………1分

    分別把A,B代入上式得,

    3=b ,0=4k+b        ………1分

    解得k=-,b=3      ………1分

    ∴所求直線的函數(shù)解析式為y= k=-x+3;…1分

    (2)在x軸上存在四個這樣的點C,他們的坐標分別是(-4,0),(-1,0),(,0),(9,0)。

    圖上標明略 (共4分)

    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源: 題型:

    (本題10分)如圖 ,直線軸的交點坐標為A(0,1),與軸的交點坐標為B(-3,0);P、Q分別是軸和直線AB上的一動

    點,在運動過程中,始終保持QA=QP;△APQ沿
    直線PQ翻折得到△CPQ,A點的對稱點是點C.
    (1)求直線AB的解析式.
    (2)是否存在點P,使得點C恰好落在直線AB
    上?若存在,請求出點P的坐標;若不存在,
    請說明理由.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,直線l與x軸、y軸的正半軸分別交于A、B兩點,OA、OB的長分別是關(guān)于x的方程x2﹣14x+4(AB+2)=0的兩個根(OB>OA),P是直線l上A、B兩點之間的一動點(不與A、B重合),PQ∥OB交OA于點Q
    【小題1】求tan∠BAO的值
    【小題2】若SPAQ=S四邊形OQPB時,請確定點P在AB上的位置,并求出線段PQ的長;
    【小題3】當(dāng)點P在線段AB上運動時,在y軸上是否存在點M,使△MPQ為等腰直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:2013屆浙江臨安於潛第一初級中學(xué)九年級上期末綜合考試數(shù)學(xué)試卷(一)(帶解析) 題型:解答題

    (本題12分)
    如圖,直線軸、軸分別交于A、B兩點,動點P從A點開始在線段AO上以每秒3個長度單位的速度向原點O運動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點.連結(jié)FP,設(shè)動點P與動直線EF同時出發(fā),運動時間為t秒.

    (1)當(dāng)t=1秒時,求梯形OPFE的面積;
    (2)t為何值時,梯形OPFE的面積最大,最大面積是多少?
    (3)設(shè)t的值分別取t1、t2時(t1≠t2),所對應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江臨安於潛第一初級中學(xué)九年級上期末綜合考試數(shù)學(xué)試卷(一)(解析版) 題型:解答題

    (本題12分)

    如圖,直線軸、軸分別交于A、B兩點,動點P從A點開始在線段AO上以每秒3個長度單位的速度向原點O運動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點.連結(jié)FP,設(shè)動點P與動直線EF同時出發(fā),運動時間為t秒.

    (1)當(dāng)t=1秒時,求梯形OPFE的面積;

    (2)t為何值時,梯形OPFE的面積最大,最大面積是多少?

    (3)設(shè)t的值分別取t1、t2時(t1≠t2),所對應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.

     

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(福建漳州卷)數(shù)學(xué) 題型:解答題

    (11·漳州)(滿分14分)如圖1,拋物線ymx2-11mx+24m (m<0) 與x軸交于B、C兩點(點B在點C的左側(cè)),拋物線另有一點A在第一象限內(nèi),且∠BAC=90°.

    (1)填空:OB_   ▲   ,OC_   ▲  

    (2)連接OA,將△OAC沿x軸翻折后得△ODC,當(dāng)四邊形OACD是菱形時,求此時拋物線的解析式;

    (3)如圖2,設(shè)垂直于x軸的直線lxn與(2)中所求的拋物線交于點M,與CD交于點N,若直線l 沿x軸方向左右平移,且交點M始終位于拋物線上AC兩點之間時,試探究:當(dāng)n為何值時,四邊形AMCN的面積取得最大值,并求出這個最大值.

     

     

     

     

     

     

     

     

    查看答案和解析>>

    同步練習(xí)冊答案