【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.
【答案】(1)證明見解析;(2)①∠OCE=45°;②EF =-2.
【解析】【試題分析】(1)根據(jù)直線與⊙O相切的性質(zhì),得OC⊥CD.
又因為AD⊥CD,根據(jù)同一平面內(nèi),垂直于同一條直線的兩條直線也平行,得:AD//OC. ∠DAC=∠OCA.又因為OC=OA,根據(jù)等邊對等角,得∠OAC=∠OCA.等量代換得:∠DAC=∠OAC.根據(jù)角平分線的定義得:AC平分∠DAO.
(2)①因為 AD//OC,∠DAO=105°,根據(jù)兩直線平行,同位角相等得,∠EOC=∠DAO=105°,在 中,∠E=30°,利用內(nèi)角和定理,得:∠OCE=45°.
②作OG⊥CE于點G,根據(jù)垂徑定理可得FG=CG, 因為OC=,∠OCE=45°.等腰直角三角形的斜邊是腰長的
倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=
, 則EF=GE-FG=
-2.
【試題解析】
(1)∵直線與⊙O相切,∴OC⊥CD.
又∵AD⊥CD,∴AD//OC.
∴∠DAC=∠OCA.
又∵OC=OA,∴∠OAC=∠OCA.
∴∠DAC=∠OAC.
∴AC平分∠DAO.
(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°
∵∠E=30°,∴∠OCE=45°.
②作OG⊥CE于點G,可得FG=CG
∵OC=,∠OCE=45°.∴CG=OG=2.
∴FG=2.
∵在Rt△OGE中,∠E=30°,∴GE=.
∴EF=GE-FG=-2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王教授和他的孫子小強星期天一起去爬山,來到山腳下,小強讓爺爺先上山,然后追趕爺爺,如圖所示,兩條線段分別表示小強和爺爺離開山腳的距離(米)與爬山所用時間(分)的關(guān)系(小強開始爬山時開始計時),請看圖回答下列問題:
(1)爺爺比小強先上了多少米?山頂離山腳多少米?
(2)誰先爬上山頂?小強爬上山頂用了多少分鐘?
(3)圖中兩條線段的交點表示什么意思?這時小強爬山用時多少?離山腳多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程
的兩個實數(shù)根.
(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲.乙兩種商品原來的單價和為100元,因市場變化,甲商品降價10%,乙商品提價40%,調(diào)價后兩種商品的單價和比原來的單價和提高了20%.若設(shè)甲.乙兩種商品原來的單價分別為x元.y元,則可列方程組為_________________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,∠A=40°,則∠ABX+∠ACX等于多少度;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,
,
,將
沿
折疊,使點
落在直角邊
上的
點處,設(shè)
與
邊分別交于點
,如果折疊后
與
均為等腰三角形,那么
__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC上.
(1)求證:△AEF∽△ABC;
(2)求這個正方形零件的邊長;
(3)如果把它加工成矩形零件如圖2,問這個矩形的最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線,點
,
分別是直線
,
上任意兩點,在直線
上取一點
,使
,連接
,在直線
上任取一點
,作
,
交直線
于點
.
(1)如圖1,若點是線段
上任意一點,
交
于
,求證:
;
(2)如圖2,點在線段
的延長線上時,
與
互為補角,若
,請判斷線段
與
的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com