亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    21、如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=a.以O(shè)C為一邊作等邊三角形OCD,連接AC、AD.
    (1)當(dāng)a=150°時(shí),試判斷△AOD的形狀,并說明理由;
    (2)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?
    分析:(1)首先根據(jù)已知條件可以證明△BOC≌△ADC,然后利用全等三角形的性質(zhì)可以求出∠ADO的度數(shù),由此即可判定△AOD的形狀;
    (2)利用(1)和已知條件及等腰三角形的性質(zhì)即可求解.
    解答:解:(1)∵△OCD是等邊三角形,
    ∴OC=CD,
    而△ABC是等邊三角形,
    ∴BC=AC,
    ∠ACB=∠OCD=60°,
    ∴∠BCO=∠ACD,
    ∴△BOC≌△ADC,
    ∴∠BOC=∠AOD,
    而∠BOC=a=150°,∠ODC=60°,
    ∴∠ADO=150°-60°=90°,
    ∴△ADO是直角三角形;

    (2)①要使AO=AD,需∠AOD=∠ADO,
    ∴190°-α=α-60°,
    ∴α=125°;
    ②要使OA=OD,需∠OAD=∠ADO,
    ∴α-60°=50°,
    ∴α=110°;
    ③要使OD=AD,需∠OAD=∠AOD,
    ∴190°-α=50°,
    ∴α=140°.
    所以當(dāng)α為110°、125°、140°時(shí),三角形AOD是等腰三角形.
    點(diǎn)評(píng):此題主要考查了等邊三角形的性質(zhì)與判定,以及等腰三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)等知識(shí),根據(jù)旋轉(zhuǎn)前后圖形不變是解決問題的關(guān)鍵.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源: 題型:

    21、如圖,點(diǎn)D是等邊三角形ABC內(nèi)的一點(diǎn),將△BDC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,試畫出旋轉(zhuǎn)后的三角形,并指出圖中的全等圖形以及它們的對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)邊和對(duì)應(yīng)角.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    16、如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),BP=5cm,△PAB繞點(diǎn)B旋轉(zhuǎn)后能與△MCB重合,連接PM,則PM=
    5
    cm.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    (2011•清流縣質(zhì)檢)星期天,小明在解答下列題目時(shí)卡殼了.
    題目1:如圖①,在△ABC中,AC=BC,∠ACB=90°,O為△ABC內(nèi)的一點(diǎn),OC=1,OA=
    3
    ,OB=
    5
    .求∠AOC的度數(shù).
    小明去請(qǐng)教小穎正在解答下列題目.
    題目2:如圖②,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),將△BCO繞C順時(shí)針方向旋轉(zhuǎn)60°得到△ADC,連接OD.
    (1)試判斷△COD的形狀,并說明理由;
    (2)當(dāng)∠COB=150°時(shí),試判斷△AOD的形狀,并寫出OA、OB、OC三者之間的等量關(guān)系式.
    小穎說:“等等,等我做完了,我們一起來看.”小明看完,小穎做完后高興地說:“哈哈,太好了,我會(huì)了.”聰明的同學(xué),你能先解答完題目2,再根據(jù)解答所得到的啟迪來完成題目1嗎?寫出你的解答過程.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖:點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α.將線段OC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得到線段CD,連接OD、AD.
    (1)求證:AD=BO;
    (2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說明理由;
    (3)探究:當(dāng)α為多少度時(shí)(直接寫出答案),△AOD是等腰三角形?

    查看答案和解析>>

    同步練習(xí)冊(cè)答案