
已知:在梯形ABCD中,CD∥AB,AD=DC=BC=2,AB=4.點(diǎn)M從A開始,以每秒1個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng);點(diǎn)N從點(diǎn)C出發(fā),沿C→D→A方向,以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),若M、N同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).運(yùn)動(dòng)時(shí)間為t秒,過(guò)點(diǎn)N作NQ⊥CD交AC于點(diǎn)Q.
(1)設(shè)△AMQ的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
(2)在梯形ABCD的對(duì)稱軸上是否存在點(diǎn)P,使△PAD為直角三角形?若存在,求點(diǎn)P到AB的距離;若不存在,說(shuō)明理由.
(3)在點(diǎn)M、N運(yùn)動(dòng)過(guò)程中,是否存在t值,使△AMQ為等腰三角形?若存在,求出t值;若不存在,說(shuō)明理由.