亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (2012•南關(guān)區(qū)模擬)思考與推理
    如圖①,在矩形ABCD中,點E為CD的中點,連接AE并延長交BC的延長線于點F,過點E作EM⊥AF交BC于點M,連接AM,請思考并判斷AE與EF、∠1與∠2具有怎樣的數(shù)量關(guān)系?并推理說明你的判斷
    探究與應(yīng)用
    如圖②,在梯形ABCD中,點E為CD的中點,連接AE,過點E作EM⊥AE交BC于點M,連接AM.若∠EMC=70°,則∠DAE=
    20
    20
    °.
    分析:思考與推理:根據(jù)中點定義可得DE=CE,然后利用“角邊角”證明△ADE和△FCE全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=EF,全等三角形對角相等可得∠2=∠F,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AM=MF,根據(jù)等邊對等角可得∠1=∠F,從而求出∠1=∠2;
    探究與應(yīng)用:先求出∠AME=∠EMC,再根據(jù)直角三角形兩銳角互余求出∠EAM,然后根據(jù)∠DAE=∠EAM即可得解.
    解答:解:思考與推理:
    ∵點E為CD的中點,
    ∴DE=CE,
    在△ADE和△FCE中,
    ∠3=∠4
    DE=CE
    ∠D=∠ECF=90°

    ∴△ADE≌△FCE(ASA),
    ∴AE=EF,∠2=∠F,
    ∵EM⊥AF,
    ∴AM=MF,
    ∴∠1=∠F,
    ∴∠1=∠2;

    探究與應(yīng)用:∵∠EMC=70°,
    ∴∠AME=∠EMC=70°,
    ∵EM⊥AE,
    ∴∠EAM=90°-70°=20°,
    ∴∠DAE=∠EAM=20°.
    故答案為:20.
    點評:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),比較簡單,熟記性質(zhì)并找出三角形全等的條件是解題的關(guān)鍵.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源: 題型:

    (2012•南關(guān)區(qū)模擬)2012年國家財政性教育經(jīng)費預(yù)算支出為21984億元,將首次占國內(nèi)生產(chǎn)總值4%以上.21984這個數(shù)字用科學(xué)記數(shù)法表示為( 。

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    (2012•南關(guān)區(qū)模擬)如圖,半徑為1的動圓P圓心在拋物線y=(x-2)2-1上,當(dāng)⊙P與x軸相切時,點P的坐標(biāo)為
    (2+
    2
    ,1)、(2-
    2
    ,1)、(2,-1)
    (2+
    2
    ,1)、(2-
    2
    ,1)、(2,-1)

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    (2012•南關(guān)區(qū)模擬)如圖,矩形ABCO(OA>OC)的兩邊分別在x軸的負(fù)半軸和y軸的正半軸上,點B在反比例函數(shù)y=-
    8
    x
    (x<0)的圖象上,且OC=2.將矩形ABCO以C為旋轉(zhuǎn)中心,逆時針轉(zhuǎn)90°后得到矩形EFCD,反比例函數(shù)y=
    k
    x
    (x<0)的圖象經(jīng)過點E.
    (1)求k的值;
    (2)判斷線段BE的中點M是否在反比例函數(shù)y=
    k
    x
    (x<0)的圖象上,請說明理由.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    (2012•南關(guān)區(qū)模擬)如圖,在梯形ABCD中,AB∥CD,AD⊥AB,AD=8cm,DC=8cm,AB=12cm.點P從點A出發(fā),沿線段AD勻速運動,與此同時,點Q從點B出發(fā),沿線段BA勻速運動,P、Q兩點運動的速度均為1cm/s,當(dāng)其中一點到達(dá)終點時,另一點也停止運動,過點Q作QM⊥AB交折線BC-CD于點M.以線段MQ為直角邊在MQ的左側(cè)作等腰直角△MQN,以線段AP為一邊在AP的右側(cè)作正方形APEF,設(shè)運動時間為t(s),△MQN與正方形APEF重疊部分的面積為S(cm).

    (1)求兩點N、F相遇時t的值;
    (2)求S與t的函數(shù)關(guān)系式;
    (3)當(dāng)點M在線段CD上運動時,設(shè)MN分別交PE、PA于點G、H,請直接寫出在此時段△PGH掃過平面部分的面積.

    查看答案和解析>>

    同步練習(xí)冊答案