亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    已知:拋物線y=ax2+bx+4的對稱軸為x=-1,且與x軸相交于點A、B,與y軸相交于精英家教網(wǎng)點C,其中點A的坐標為(-3,0),
    (1)求該拋物線的解析式;
    (2)若該拋物線的頂點為D,求△ACD的面積.
    分析:(1)由拋物線y=ax2+bx+4的對稱軸為x=-1,與x軸相交于點A(-3,0),利用待定系數(shù)法即可求得該拋物線的解析式;
    (2)由D是拋物線y=-
    4
    3
    x2-
    8
    3
    x+4的頂點,即可求得D的坐標,然后設AC與拋物線對稱軸的交點為E,即可求得DE的長,然后由S△ACD=S△CDE+S△ADE求得答案.
    解答:精英家教網(wǎng)解:(1)由題意得
    -
    b
    2a
    =-1
    9a-3b+4=0
    ,
    解得:
    a=-
    4
    3
    b=-
    8
    3
    ,
    ∴拋物線的解析式為y=-
    4
    3
    x2-
    8
    3
    x+4;(4分)

    (2)D是拋物線y=-
    4
    3
    x2-
    8
    3
    x+4的頂點,
    ∴點D的坐標為(-1,
    16
    3
    ),
    設AC的解析式為:y=kx+b,
    則:
    -3k+b=0
    b=4

    解得:
    k=
    4
    3
    b=4
    ,
    ∴直線AC的解析式為:y=
    4
    3
    x+4,
    則AC與拋物線對稱軸的交點E的坐標為:(-1,
    8
    3
    ),
    ∴DE=
    16
    3
    -
    8
    3
    =
    8
    3
    ,
    ∴S△ACD=S△CDE+S△ADE=
    1
    2
    ×
    8
    3
    ×2+
    1
    2
    ×
    8
    3
    ×1=4.(4分)
    點評:此題考查了待定系數(shù)法求函數(shù)的解析式與三角形面積的求解方法,難度不大,解題的關(guān)鍵是方程思想與數(shù)形結(jié)合思想的應用.
    練習冊系列答案
    相關(guān)習題

    科目:初中數(shù)學 來源: 題型:

    已知:拋物線y=x2-(a+b)x+
    c2
    4
    ,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
    (1)求證:拋物線與x軸必有兩個不同交點;
    (2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
    (3)在(2)的條件下,設△ABC的面積為
    3
    ,拋物線與x軸交于點P、Q,問是否精英家教網(wǎng)存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:

    已知:拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,0),一條直線y=ax+b,它們的系數(shù)之間滿足如下關(guān)系:a>b>c.
    (1)求證:拋物線與直線一定有兩個不同的交點;
    (2)設拋物線與直線的兩個交點為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
    c
    a
    ,試問:是否存在實數(shù)k,使線段A1B1的長為4
    2
    .如果存在,求出k的值;如果不存在,請說明理由.

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:

    (2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點P,如圖所示.
    (1)頂點P的坐標是
    (-1,4)
    (-1,4)
    ;
    (2)若直線y=ax+b經(jīng)過另一點A(0,11),求出該直線的表達式;
    (3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點坐標.

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:解答題

    已知:拋物線數(shù)學公式,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
    (1)求證:拋物線與x軸必有兩個不同交點;
    (2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
    (3)在(2)的條件下,設△ABC的面積為數(shù)學公式,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

    查看答案和解析>>

    科目:初中數(shù)學 來源:2009年四川省綿陽市南山中學自主招生考試數(shù)學試卷(解析版) 題型:解答題

    已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
    (1)求證:拋物線與x軸必有兩個不同交點;
    (2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
    (3)在(2)的條件下,設△ABC的面積為,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

    查看答案和解析>>

    同步練習冊答案