【題目】如圖,∠1與哪個角是內(nèi)錯角,∠2與哪個角是同旁內(nèi)角,他們分別是哪兩條直線被哪條直線所截.
【答案】∠1和∠DAB是由直線DE和BC被AB所截產(chǎn)生的內(nèi)錯角;∠2和∠1是由直線AB和AC被BC所截產(chǎn)生的同旁內(nèi)角;∠2和∠CAD是由直線DE和BC被AC所截產(chǎn)生的同旁內(nèi)角;∠2和∠CAB是由直線CB和AB被AC所截產(chǎn)生的同旁內(nèi)角.
【解析】
根據(jù)內(nèi)錯角的定義:兩條直線被第三條直線所截,兩個角分別在截線的兩側,且夾在兩條被截直線之間,具有這樣位置關系的兩個角叫做內(nèi)錯角和同旁內(nèi)角的定義:兩條直線被第三條直線所截,兩個角在截線的同一側,且夾在兩條被截直線之間,具有這樣位置關系的兩個角叫做同旁內(nèi)角,判斷即可.
解:由圖可知:∠1和∠DAB是由直線DE和BC被AB所截產(chǎn)生的內(nèi)錯角;
∠2和∠1是由直線AB和AC被BC所截產(chǎn)生的同旁內(nèi)角;
∠2和∠CAD是由直線DE和BC被AC所截產(chǎn)生的同旁內(nèi)角;
∠2和∠CAB是由直線CB和AB被AC所截產(chǎn)生的同旁內(nèi)角.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)交
軸于點
、
,交
軸于點
,在
軸上有一點
,連接
.
(1)求二次函數(shù)的表達式;
(2)若點為拋物線在
軸負半軸上方的一個動點,求
面積的最大值;
(3)拋物線對稱軸上是否存在點,使
為等腰三角形,若存在,請直接寫出所有
點的坐標,若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)材料,解答問題
如圖,數(shù)軸上有點,對應的數(shù)分別是6,-4,4,-1,則
兩點間的距離為
;
兩點間的距離為
;
兩點間的距離為
;由此,若數(shù)軸上任意兩點
分別表示的數(shù)是
,則
兩點間的距離可表示為
.反之,
表示有理數(shù)
在數(shù)軸上的對應點
之間的距離,稱之為絕對值的幾何意義.
問題應用1:
(1)如果表示-1的點和表示
的點
之間的距離是2,則點
對應的
的值為___________;
(2)方程的解
____________;
(3)方程的解
______________ ;
問題應用2:
如圖,若數(shù)軸上表示的點為
.
(4)的幾何意義是數(shù)軸上_____________,當
__________,
的值最小是____________;
(5)的幾何意義是數(shù)軸上_______,
的最小值是__________,此時點
在數(shù)軸上應位于__________上;
(6)根據(jù)以上推理方法可求的最小值是___________,此時
__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABC,∠C=90°,AB=10,且cosA=. M為線段AB的中點, 作DM⊥AB交AC于D. 點Q在線段AC上,點P在線段BC上,以PQ為直徑的圓始終過點M, 且PQ交線段DM于點E.
⑴ 試說明△AMQ∽△PME;
⑵ 當△PME是等腰三角形時,求出線段AQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(-3,0),B(4,0),C(0,4). 二次函數(shù)的圖像經(jīng)過A、B、C三點.點P沿AC由點A處向點C運動,同時,點Q沿BO由點B處向點O運動,運動速度均為每秒1個單位長度.當一個點停止運動時,另一個點也隨之停止運動.連接PQ,過點Q作QD⊥x軸,與二次函數(shù)的圖像交于點D,連接PD,PD與BC交于點E. 設點P的運動時間為t秒(t>0).
⑴ 求二次函數(shù)的表達式;
⑵ 在點P、Q運動的過程中,當∠PQA+∠PDQ=90°時,求t的值;
⑶ 連接PB、BD、CD,試探究在點P,Q運動的過程中,是否存在某一時刻,使得四邊形PBDC是平行四邊形?若存在,請求出此時t的值與點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】求下列函數(shù)的圖象的對稱軸、頂點坐標及與x軸的交點坐標.
(1)y=4x2+24x+35;
(2)y=-3x2+6x+2;
(3)y=x2-x+3;
(4)y=2x2+12x+18.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系上有點A(1,0),點A第一次跳動至點,第二次點
跳動至點
第三次點
跳動至點
,第四次點
跳動至點
……,依此規(guī)律跳動下去,則點
與點
之間的距離是( )
A. 2017B. 2018C. 2019D. 2020
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一面靠墻的空地上用長為24 m的籬笆圍成中間隔有二道籬笆的長方形花圃.設花圃的寬AB為x m,面積為S m2.
(1)求S與x的函數(shù)關系式及自變量的取值范圍;
(2)已知墻的最大可用長度為8 m,
①求所圍成花圃的最大面積;
②若所圍花圃的面積不小于20 m2,請直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與⊙O相切于點A,弦CD∥AB,E、F為圓上的兩點,且∠CDE=∠ADF.若⊙O的半徑為,CD=4,則弦EF的長為( )
A. 4 B. 2
C. 5 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com