亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    23、我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.
    (1)除了正方形外,寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是勾股四邊形的兩種圖形的名稱:
    矩形、直角梯形
    ;
    (2)如圖1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你畫(huà)出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對(duì)角線相等的勾股四邊形OAMB,并寫(xiě)出點(diǎn)M的坐標(biāo);
    (3)如圖2,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDE及ACFG,連接CE,BG相交于O點(diǎn),P是線段DE上任意一點(diǎn).求證:四邊形OBPE是勾股四邊形.
    分析:(1)根據(jù)一些特殊四邊形的性質(zhì)即可找出符合性質(zhì)的;
    (2)根據(jù)題中的要求和勾股定理的性質(zhì)求出點(diǎn)M的坐標(biāo);
    (3)連接BE,首先證明△AEC≌△ABG,則∠AEC=∠ABG,∵∠AEC+∠CEB+∠EBA=90°,∴∠ABG+∠CEB+∠EBA=90°,∴OB2+OE2=BE2,然后證明OB2+OE2=BE2即可.
    解答:解:(1)矩形、直角梯形;(2分)

    (2)如圖,M點(diǎn)的坐標(biāo)是(3,4)或(4,3);(2分)

    (3)連接BE(如圖)
    ∵四邊形ABDE和ACFG是正方形
    ∴AE=AB、AC=AG、∠EAB=∠CAG=90°
    ∴∠EAC=∠BAG
    ∴△AEC≌△ABG
    ∴∠AEC=∠ABG(1分)
    ∵∠AEC+∠CEB+∠EBA=90°
    ∴∠ABG+∠CEB+∠EBA=90°
    ∴∠BOE=90°(2分)
    ∴OB2+OE2=BE2
    即四邊形OBPE是勾股四邊形.(1分)
    點(diǎn)評(píng):本題主要考查對(duì)于勾股定理的應(yīng)用以及全等三角形的性質(zhì).
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    24、我們給出如下定義:若一個(gè)四邊形的兩條對(duì)角線相等,則稱這個(gè)四邊形為等對(duì)角線四邊形.請(qǐng)解答下列問(wèn)題:
    (1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是等對(duì)角線四邊形的兩種圖形的名稱;
    (2)探究:當(dāng)?shù)葘?duì)角線四邊形中兩條對(duì)角線所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和與其中一條對(duì)角線的大小關(guān)系,并證明你的結(jié)論.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    24、我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.
    (1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是勾股四邊形的兩種圖形的名稱
    矩形
    ,
    正方形
    ;
    (2)如圖,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你畫(huà)出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對(duì)角線相等的勾股四邊形OAMB.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    27、我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.
    (1)寫(xiě)出你所知道的特殊四邊形中是勾股四邊形的兩種圖形的名稱
    正方形
    長(zhǎng)方形

    (2)如下圖(1),請(qǐng)你在圖中畫(huà)出以格點(diǎn)為頂點(diǎn),OA、OB為勾股邊,且對(duì)角線相同的所有勾股四邊形OAMB.
    (3)如圖(2),以△ABC邊AB作如圖正三角形ABD,∠CBE=60°,且BE=BC,連接DE、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    我們給出如下定義:若一個(gè)四邊形ABCD中AC⊥BD,BD平分AC,則稱這個(gè)四邊形為箏形四邊形.
    (1)小明說(shuō):“箏形四邊形一定是菱形”.你認(rèn)為小明的說(shuō)法是否正確?若正確請(qǐng)說(shuō)明理由;若不正確,請(qǐng)舉個(gè)反例說(shuō)明.
    (3)在箏形ABCD中,AD=CD,AB=BC,若∠ADC=∠ABC,tan∠DAC=1.求證:箏形ABCD是正方形.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案