亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高.
    (1)若BD=h,M是直線BC上的任意一點,M到AB、AC的距離分別為h1,h2
    A、若M在線段BC上,請你結(jié)合圖形①證明:h1+h2=h;
    B、當(dāng)點M在BC的延長線上時,h1,h2,h之間的關(guān)系為
     
    .(請直接寫出結(jié)論,不必證明)
    (2)如圖②,在平面直角坐標(biāo)系中有兩條直線l1:y=
    34
    x+6;l2:y=-3x+6.若l2上的一點M到l1的距離是3,請你利用以上結(jié)論求解點M的坐標(biāo).
    精英家教網(wǎng)
    分析:(1)如圖,連接AM,由于S△ABC=S△ABM+S△ACM,而EM⊥AB,MF⊥AC,BD⊥AC,因此得到
    1
    2
    AC•h=
    1
    2
    AB•h1+
    1
    2
    AC•h2,而AB=AC,因此即可證明結(jié)論;
    (2)由題意可知,DE=DF=10,所以△EDF是等腰三角形,
    當(dāng)點M在線段EF上時,依據(jù)(1)中結(jié)論,由h=EO=6可以得到M到DF(即x軸)的距離也為3,此時可求得M的坐標(biāo);
    當(dāng)點M在射線FE上時,依據(jù)(1)中結(jié)論,由h=EO=6可以得到M到DF(即x軸)的距離也為9,此時可求得M的坐標(biāo)故點M的坐標(biāo)為.
    解答:精英家教網(wǎng)(1)證明:連接AM,
    ①∵S△ABC=S△ABM+S△ACM,EM⊥AB,MF⊥AC,BD⊥AC,
    1
    2
    AC•h=
    1
    2
    AB•h1+
    1
    2
    AC•h2
    又∵AB=AC,
    ∴h=h1+h2,(2分)
    h1-h2=h;(3分)
    故答案為:h1-h2=h.

    (2)由題意可知,DE=DF=10,精英家教網(wǎng)
    ∴△EDF是等腰三角形,(4分)
    當(dāng)點M在線段EF上時,依據(jù)(1)中結(jié)論,
    ∵h(yuǎn)=EO=6,
    ∴M到DF(即x軸)的距離也為3,
    ∴點M的縱坐標(biāo)為3,此時可求得M(1,3),(6分)
    當(dāng)點M在射線FE上時,依據(jù)(1)中結(jié)論,
    ∵h(yuǎn)=EO=6,∴M到DF(即x軸)的距離也為9,
    ∴點M的縱坐標(biāo)為9,此時可求得M(-1,9),(8分)
    故點M的坐標(biāo)為(1,3)或(-1,9).
    點評:此題分別考查了全等三角形的性質(zhì)與判定、等腰三角形的性質(zhì)、一次函數(shù)的性質(zhì)等知識,題目要求學(xué)生有較高的綜合解題能力,把幾何圖形的結(jié)論利用到函數(shù)圖象中解決問題.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源: 題型:

    探究學(xué)習(xí):探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高(如圖1).
    (1)若等腰△ABC的面積為24 cm2,腰的長為8 cm,則腰AC上的高BD的長為
     
    cm;
    (2)若BD=h,M是直線BC上的任意一點,M到AB、AC的距離分別為h1、h2
    ①若M在線段BC上,請你結(jié)合圖2證明:h1+h2=h;
    ②當(dāng)點M在BC延長線上時,h1、h2、h之間的關(guān)系為
     
    .(直接寫出結(jié)論,不必證明)
    精英家教網(wǎng)

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:解答題

    探究學(xué)習(xí):探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高(如圖1).
    (1)若等腰△ABC的面積為24 cm2,腰的長為8 cm,則腰AC上的高BD的長為______cm;
    (2)若BD=h,M是直線BC上的任意一點,M到AB、AC的距離分別為h1、h2
    ①若M在線段BC上,請你結(jié)合圖2證明:h1+h2=h;
    ②當(dāng)點M在BC延長線上時,h1、h2、h之間的關(guān)系為______.(直接寫出結(jié)論,不必證明)

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:解答題

    探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高.
    (1)若BD=h,M是直線BC上的任意一點,M到AB、AC的距離分別為h1,h2
    A、若M在線段BC上,請你結(jié)合圖形①證明:h1+h2=h;
    B、當(dāng)點M在BC的延長線上時,h1,h2,h之間的關(guān)系為______.(請直接寫出結(jié)論,不必證明)
    (2)如圖②,在平面直角坐標(biāo)系中有兩條直線l1:y=數(shù)學(xué)公式x+6;l2:y=-3x+6.若l2上的一點M到l1的距離是3,請你利用以上結(jié)論求解點M的坐標(biāo).

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:2012年河南省中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

    探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高.
    (1)若BD=h,M是直線BC上的任意一點,M到AB、AC的距離分別為h1,h2
    A、若M在線段BC上,請你結(jié)合圖形①證明:h1+h2=h;
    B、當(dāng)點M在BC的延長線上時,h1,h2,h之間的關(guān)系為______.(請直接寫出結(jié)論,不必證明)
    (2)如圖②,在平面直角坐標(biāo)系中有兩條直線l1:y=x+6;l2:y=-3x+6.若l2上的一點M到l1的距離是3,請你利用以上結(jié)論求解點M的坐標(biāo).

    查看答案和解析>>

    同步練習(xí)冊答案