【題目】已知是橢圓與雙曲線(xiàn)的公共焦點(diǎn),
是它們的一個(gè)公共點(diǎn),且
,橢圓的離心率為
,雙曲線(xiàn)的離心率為
,若
,則
的最小值為________.
【答案】
【解析】
由題意可知:|PF1|=|F1F2|=2c,設(shè)橢圓的方程為1(a1>b1>0),雙曲線(xiàn)的方程為
1(a2>0,b2>0),利用橢圓、雙曲線(xiàn)的定義及離心率公式可得
的表達(dá)式,通過(guò)基本不等式即得結(jié)論.
解:由題意可知:|PF1|=|F1F2|=2c,
設(shè)橢圓的方程為1(a1>b1>0),
雙曲線(xiàn)的方程為1(a2>0,b2>0),
又∵|F1P|+|F2P|=2a1,|PF2|﹣|F1P|=2a2,
∴|F2P|+2c=2a1,|F2P|﹣2c=2a2,
兩式相減,可得:a1﹣a2=2c,
則(
18)
(2
18)=8.
當(dāng)且僅當(dāng),即有e2=3時(shí)等號(hào)成立,
則的最小值為8,
故答案為:8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,
,
,
,
,
,
在線(xiàn)段
上,
是線(xiàn)段
的中點(diǎn),沿
把平面
折起到平面
的位置,使
平面
,則下列命題正確的編號(hào)為______.
①二面角的余弦值為
;
②設(shè)折起后幾何體的棱的中點(diǎn)
,則
平面
;
③;
④四棱錐的內(nèi)切球的表面積為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.如圖是源于其思想的一個(gè)程序框圖,若輸入,
,則輸出的
等于( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
底面
,
為直角,
,
,
、
分別為
、
的中點(diǎn).
(I)證明:平面平面
;
(II)設(shè),且二面角
的平面角大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面
為平行四邊形
∠ADC=45°,,
為
的中點(diǎn),
⊥平面
,
,
為
的中點(diǎn).
(1)證明:⊥平面
;
(2)求直線(xiàn)與平面
所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,曲線(xiàn)
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,
點(diǎn)的極坐標(biāo)為
,斜率為
的直線(xiàn)
經(jīng)過(guò)點(diǎn)
.
(I)求曲線(xiàn)的普通方程和直線(xiàn)
的參數(shù)方程;
(II)設(shè)直線(xiàn)與曲線(xiàn)
相交于
,
兩點(diǎn),求線(xiàn)段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的函數(shù)
滿(mǎn)足:
,
.若方程
有5個(gè)實(shí)根,則正數(shù)a的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)
的極坐標(biāo)方程為
.
(1)求曲線(xiàn)的普通方程和直線(xiàn)
的直角坐標(biāo)方程;
(2)射線(xiàn)的極坐標(biāo)方程為
,若射線(xiàn)
與曲線(xiàn)
的交點(diǎn)為
,與直線(xiàn)
的交點(diǎn)為
,求線(xiàn)段
的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com