【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系,將曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的
,得到曲線
,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,
的極坐標(biāo)方程為
.
(Ⅰ)求曲線的參數(shù)方程;
(Ⅱ)過原點(diǎn)且關(guān)于
軸對稱的兩條直線
與
分別交曲線
于
、
和
、
,且點(diǎn)
在第一象限,當(dāng)四邊形
的周長最大時(shí),求直線
的普通方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為
軸的正半軸,兩種坐標(biāo)系中的長度單位相同,圓
的直角坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù)),射線
的極坐標(biāo)方程為
.
(1)求圓和直線
的極坐標(biāo)方程;
(2)已知射線與圓
的交點(diǎn)為
,與直線
的交點(diǎn)為
,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x (℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=
x+
;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
,定點(diǎn)
(常數(shù)
)的直線
與曲線
相交于
、
兩點(diǎn).
(1)若點(diǎn)的坐標(biāo)為
,求證:
(2)若,以
為直徑的圓的位置是否恒過一定點(diǎn)?若存在,求出這個(gè)定點(diǎn),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換
得到曲線
,若點(diǎn)
,直線
與
交與
,
,求
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左頂點(diǎn)為
,右焦點(diǎn)為
,
為原點(diǎn),
,
是
軸上的兩個(gè)動點(diǎn),且
,直線
和
分別與橢圓
交于
,
兩點(diǎn).
(Ⅰ)求的面積的最小值;
(Ⅱ)證明: ,
,
三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在
處的極值為0.
(1)求常數(shù)的值;
(2)求的單調(diào)區(qū)間;
(3)方程在區(qū)間
上有三個(gè)不同的實(shí)根時(shí),求實(shí)數(shù)
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)若,求不等式
的解集;
(2)若方程有三個(gè)不同的解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com