亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (2013•黃埔區(qū)一模)給定橢圓C:
    x2
    a2
    +
    y2
    b2
    =1(a>b>0)
    ,稱圓心在原點O、半徑是
    a2+b2
    的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(
    2
    ,0)
    ,其短軸的一個端點到點F的距離為
    3

    (1)求橢圓C和其“準圓”的方程;
    (2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
    AB
    AD
    的取值范圍;
    (3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.
    分析:(1)利用橢圓和其“準圓”的標準方程及其定義即可得出;
    (2)先設出點B、D的坐標并求出點A的坐標,利用向量的數(shù)量積得出
    AD
    AB
    ,再利用點B在橢圓上即可得出其取值范圍;
    (3)通過分類討論,假設在橢圓C的“準圓”上任取一點P作直線與橢圓相切,聯(lián)立直線與橢圓的方程,利用根與系數(shù)的關(guān)系求出直線是否滿足兩條直線垂直的條件即可.
    解答:解:(1)由題意可得:a=
    3
    ,c=
    2
    ,b=1,∴r=
    (
    3
    )2+12
    =2.
    ∴橢圓C的方程為
    x2
    3
    +y2=1
    ,其“準圓”的方程為x2+y2=4;
    (2)由“準圓”的方程為x2+y2=4,令y=0,解得x=±2,取點A(2,0).
    設點B(x0,y0),則D(x0,-y0).
    AB
    AD
    =(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02,
    ∵點B在橢圓
    x2
    3
    +y2=1
    上,∴
    x02
    3
    +y02=1
    ,∴y02=1-
    x02
    3

    AD
    AB
    =(x0-2)2-1+
    x02
    3
    =
    4
    3
    (x0-
    3
    2
    )2
    ,
    -
    3
    x0
    3
    ,∴0≤
    4
    3
    (x0-
    3
    2
    )2<7+4
    3
    ,
    0≤
    AD
    AB
    <7+4
    3
    ,即
    AD
    AB
    的取值范圍為[0,7+4
    3
    )

    (3)①當過準圓上點P的直線l與橢圓相切且其中一條直線的斜率為0而另一條斜率不存在時,則點P為
    3
    ,±1)
    ,此時l1⊥l2;
    ②當過準圓上的點P的直線l的斜率存在不為0且與橢圓相切時,設點P(x0,y0),直線l的方程為m(y-y0)=x-x0
    聯(lián)立
    m(y-y0)=x-x0
    x2
    3
    +y2=1
    消去x得到關(guān)于y的一元二次方程:
    (3+m2)y2+(2mx0-2m2y0)y+m2y02+x02-2mx0y0-3=0
    △=(2mx0-2m2y0)2-4(3+m2)(m2y02+x02-2mx0y0-3)=0,
    化為(y02-1)m2-2mx0y0+x02-3=0,
    y02-1≠0,m存在,∴m1m2=
    x02-3
    y02-1

    ∵點P在準圓上,∴x02+y02=4,∴x02-3=1-y02,
    ∴m1m2═-1.
    即直線l1,l2的斜率kl1kl2=-1,因此當過準圓上的點P的直線l的斜率存在不為0且與橢圓相切時,直線l1⊥l2
    綜上可知:在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,l1⊥l2
    點評:熟練掌握橢圓和圓的標準方程及其定義、向量的數(shù)量積、直線與橢圓相切問題時聯(lián)立直線與橢圓的方程得出根與系數(shù)的關(guān)系、兩條直線垂直的條件是解題的關(guān)鍵.
    練習冊系列答案
    相關(guān)習題

    科目:高中數(shù)學 來源: 題型:

    (2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設函數(shù)f(x)的定義域為R+,且f(1)=3.
    (1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
    (2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
    (3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
    ①f(2-n)與2-n+2(n∈N*);
    ②f(x)與2x+2(x∈(0,1]).

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    (2013•黃埔區(qū)一模)已知集合A={x|0<x<3},B={x|x2≥4},則A∩B=
    {x|2≤x<3}
    {x|2≤x<3}

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    (2013•黃埔區(qū)一模)已知tanα=
    1
    2
    ,tan(β-α)=-
    1
    3
    ,則tan(β-2α)的值為
    -1
    -1

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    (2013•黃埔區(qū)一模)已知命題“若f(x)=m2x2,g(x)=mx2-2m,則集合{x|f(x)<g(x),
    12
    ≤x≤1}=∅
    ”是假命題,則實數(shù)m的取值范圍是
    (-7,0)
    (-7,0)

    查看答案和解析>>

    同步練習冊答案