亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,D、E、F分別是棱PA、PB、PC的中點(diǎn),連接DE,DF,EF.
    (1)求證:平面DEF∥平面ABC;
    (2)若PA=BC=2,當(dāng)三棱錐P-ABC的體積的最大值時(shí),求二面角A-EF-D的平面角的余弦值.

    【答案】分析:(1)由已知中D、E分別是棱PA、PB的中點(diǎn),根據(jù)三角形中位線定理,我們可以得到DE∥AB,由線面平行的判定定理可得DE∥平面PAB,同理可證DF∥平面PAB,進(jìn)而由面面平行的判定定理,我們可得平面DEF∥平面ABC;
    (2)若PA=BC=2,當(dāng)三棱錐P-ABC的體積的最大值時(shí),我們可得AB=AC=,此時(shí)二面角A-EF-D有兩種方法:
    ①幾何法:作DG⊥EF,垂足為G,連接AG,則∠AGD是二面角A-EF-D的平面角,解△AGD即可求出二面角A-EF-D的平面角的余弦值.
    ②向量法:分別以AB、AC、AP所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系A(chǔ)-xyz,分別求出平面AEF與平面DEF的法向量,代入向量夾角公式,即可求出二面角A-EF-D的平面角的余弦值.
    解答:解:(1)證明:∵D、E分別是棱PA、PB的中點(diǎn),
    ∴DE是△PAB的中位線,∴DE∥AB,
    ∵DE?平面ABC,AB?平面ABC,
    ∴DE∥平面ABC,…(2分)
    同理DF∥平面ABC
    ∵DE∩DF=D,DE?平面DEF,
    DF?平面DEF,
    ∴平面DEF∥平面ABC.…(4分)
    (2)求三棱錐P-ABC的體積的最大值,給出如下兩種解法:
    解法1:由已知PA⊥平面ABC,AC⊥AB,PA=BC=2,
    ∴AB2+AC2=BC2=4,
    ∴三棱錐P-ABC的體積為
    =
    當(dāng)且僅當(dāng)AB=AC時(shí)等號(hào)成立,V取得最大值,其值為,此時(shí)AB=AC=
    解法2:設(shè)AB=x,在△ABC中,(0<x<2),
    ∴三棱錐P-ABC的體積為=…(6分)
    =,
    ∵0<x<2,0<x2<4,∴當(dāng)x2=2,即時(shí),V取得最大值,其值為,此時(shí)AB=AC=.…(8分)
    求二面角A-EF-D的平面角的余弦值..,給出如下兩種解法:
    解法1:作DG⊥EF,垂足為G,連接AG,
    ∵PA⊥平面ABC,平面ABC∥平面DEF,∴P A⊥平面DEF,
    ∵EF?平面DEF,∴P A⊥EF.
    ∵DG∩PA=D,∴EF⊥平面PAG,AG?平面PAG,∴EF⊥AG,
    ∴∠AGD是二面角A-EF-D的平面角.…(10分)
    在Rt△EDF中,DE=DF=,,∴
    在Rt△ADG中,

    ∴二面角A-EF-D的平面角的余弦值為.…(14分)
    解法2:分別以AB、AC、AP所在直線為x軸,y軸,z軸,建立如圖的空間直角坐標(biāo)系A(chǔ)-xyz,
    則A(0,0,0),D(0,0,1),E(,0,1),
    F(0,,1).∴.…(9分)
    設(shè)為平面AEF的法向量,
    ,
    ,令,則,z=-1,
    為平面AEF的一個(gè)法向量.…(11分)
    ∵平面DEF的一個(gè)法向量為
    ,…(13分)
    所成角的大小等于二面角A-EF-D的平面角的大小.
    ∴二面角A-EF-D的平面角的余弦值為.…(14分).
    點(diǎn)評(píng):本題主要考查空間中的線面的位置關(guān)系、空間的角、幾何體體積等基礎(chǔ)知識(shí),考查空間想象能力、推理論證能力和運(yùn)算求解能力,考查的知識(shí)點(diǎn)是用空間向量求平面間的夾角,平面與平面平行的判定,二面角的平面角及求法,其中(1)的關(guān)鍵是證得DE∥平面PAB,DF∥平面PAB,(2)中幾何法的關(guān)鍵是證得∠AGD是二面角A-EF-D的平面角,向量法的關(guān)鍵是求出平面AEF與平面DEF的法向量.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點(diǎn),定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
    1
    2
    ,x,y),且
    1
    x
    +
    a
    y
    ≥8恒成立,則正實(shí)數(shù)a的最小值為
     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當(dāng)△AEF的面積最大時(shí),tanθ的值為( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點(diǎn).
    (Ⅰ)求證:DE‖平面PBC;
    (Ⅱ)求證:AB⊥PE;
    (Ⅲ)求二面角A-PB-E的大小.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點(diǎn)繞三棱錐側(cè)面一圈回到點(diǎn)A的最短距離是
    3
    ,則PA=
    1
    1

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點(diǎn)D,E分別在棱
    PB,PC上,且BC∥平面ADE
    (I)求證:DE⊥平面PAC;
    (Ⅱ)當(dāng)二面角A-DE-P為直二面角時(shí),求多面體ABCED與PAED的體積比.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案