【題目】橢圓:
的離心率為
,過其右焦點(diǎn)
與長軸垂直的直線與橢圓在第一象限相交于點(diǎn)
,
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左頂點(diǎn)為
,右頂點(diǎn)為
,點(diǎn)
是橢圓上的動點(diǎn),且點(diǎn)
與點(diǎn)
,
不重合,直線
與直線
相交于點(diǎn)
,直線
與直線
相交于點(diǎn)
,求證:以線段
為直徑的圓恒過定點(diǎn).
【答案】(1) . (2)證明見解析.
【解析】試題分析:
(1)由題意可得,則橢圓C的標(biāo)準(zhǔn)方程為
.
(2)由題意可得,結(jié)合題意可得圓的方程為
,則以線段ST為直徑的圓恒過定點(diǎn)
.
試題解析:
(1)解: ,又
,聯(lián)立解得:
,
所以橢圓C的標(biāo)準(zhǔn)方程為.
(2)證明:設(shè)直線AP的斜率為k,則直線AP的方程為,
聯(lián)立得
.
,
整理得: ,故
,
又,
(
分別為直線PA,PB的斜率),
所以,
所以直線PB的方程為: ,
聯(lián)立得
,
所以以ST為直徑的圓的方程為: ,
令,解得:
,
所以以線段ST為直徑的圓恒過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
.直角梯形
可以通過直角梯形
以直線
為軸旋轉(zhuǎn)得到,且平面
平面
.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2017/12/20/1842736631291904/1845869604462592/STEM/592e486e595e40bf846fae2bfa16ac59.png]
(I)求證: .
(II)求直線和平面
所成角的正弦值.
(III)設(shè)為
的中點(diǎn),
,
分別為線段
,
上的點(diǎn)(都不與點(diǎn)
重合).若直線
平面
,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)
在
上的最小值;
(2)若,不等式
恒成立,求
的取值范圍;
(3)若,不等式
恒成立,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,
,
,
為
的中點(diǎn),
為
的中點(diǎn),且
為正三角形.
(1)求證: 平面
;
(2)若,三棱錐
的體積為1,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
為實(shí)數(shù),函數(shù)
,函數(shù)
.
(1) 當(dāng)時(shí),令
,若
恒成立,求實(shí)數(shù)
的取值范圍;
(2) 當(dāng)時(shí),令
,是否存在實(shí)數(shù)
,使得對于函數(shù)
定義域中的任意實(shí)數(shù)
,均存在實(shí)數(shù)
,有
成立?若存在,求出實(shí)數(shù)
的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)
的圖象全部在直線
的下方,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
.
(Ⅰ)若,求
的極小值;
(Ⅱ)在(Ⅰ)的條件下,是否存在實(shí)常數(shù)和
,使得
和
?若存在,求出
和
的值.若不存在,說明理由;
(Ⅲ)設(shè)有兩個零點(diǎn)
,且
成等差數(shù)列,試探究
值的符號.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計(jì) | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升,
升,
升,1斗為10升,則下列判斷正確的是( )
A. ,
,
依次成公比為2的等比數(shù)列,且
B. ,
,
依次成公比為2的等比數(shù)列,且
C. ,
,
依次成公比為
的等比數(shù)列,且
D. ,
,
依次成公比為
的等比數(shù)列,且
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com