亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    (本小題滿分14分)

        已知定義域?yàn)閇0, 1]的函數(shù)fx)同時(shí)滿足:

        ①對(duì)于任意的x[0, 1],總有fx)≥0;

        ②f(1)=1; 

        ③若0≤x1≤1, 0≤x2≤1, x1x2≤1, 則有f x1x2) ≥ f x1)+f x2).

       (1)試求f(0)的值;

       (2)試求函數(shù)fx)的最大值;

    (3)試證明:當(dāng)x, nN時(shí),fx)<2x

     

    【答案】

    (1)f(0)=0

    (2)fx)取最大值1.

    (3)略

    【解析】(1)令x1x2=0,依條件(3)可得f(0+0)≥2f(0),即f(0)≤0

    又由條件(1)得f(0)≥0 故f(0)=0                               …………3分

    (2)任取0≤x1<x2≤1可知x2x1(0,1],則              

    fx2)=f[(x2x1)+x1]≥fx2x1)+fx1)≥fx1

    于是當(dāng)0≤x≤1時(shí),有fx)≤f(1)=1因此當(dāng)x=1時(shí),fx)取最大值1.…………8分

    (3)證明:先用數(shù)學(xué)歸納法證明:當(dāng)xnN)時(shí),fx)≤

    10當(dāng)n=1時(shí),x,fx)≤f(1)=1=,不等式成立.

    當(dāng)n=2時(shí),x,<2x≤1,f(2x)≤1,f(2x)≥fx)+fx)=2fx

    fx)≤f(2x)≤ 不等式成立.

    20假設(shè)當(dāng)nkkN,k≥2)時(shí),不等式成立,即x時(shí),fx)≤

    則當(dāng)nk+1時(shí),x,記t=2x,則t=2x, ∴ft)≤

    ft)=f(2x)≥2fx),∴fx)≤f(2x)=ft)≤

    因此當(dāng)nk+1時(shí)不等式也成立.

    由10,20知,當(dāng)xnN)時(shí),fx)≤

    又當(dāng)xnN)時(shí),2x>, 此時(shí)fx)<2x

    綜上所述:當(dāng)xnN)時(shí),有fx)<2x.  ………… 14分

     

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    (2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
    3
    sin2x+2sin(
    π
    4
    +x)cos(
    π
    4
    +x)

    (I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
    (II)當(dāng)x∈[0,
    π
    2
    ]  時(shí),求函數(shù)f(x)
    的值域.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    (本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

    (本小題滿分14分)
    已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
    (1)證明:數(shù)列}是等比數(shù)列;
    (2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
    (3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

     (本小題滿分14分)

    某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

    (Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

    (Ⅱ)求該商品第7天的利潤(rùn);

    (Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

    (本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

    ⑴ 求滿足的關(guān)系式;

    ⑵ 若上恒成立,求的取值范圍;

    ⑶ 證明:

     

    查看答案和解析>>

    同步練習(xí)冊(cè)答案