亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    如圖,在正三棱錐A-BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分別交AB、BD、DC、CA于點(diǎn)E、F、G、H.
    (1)判定四邊形EFGH的形狀,并說明理由.
    (2)設(shè)P是棱AD上的點(diǎn),當(dāng)AP為何值時(shí),平面PBC⊥平面EFGH,請(qǐng)給出證明.

    解:(1)∵AD∥面EFGH,面ACD∩面EFGH=HG,AD?面ACD
    ∴HG∥EF.(2分)
    同理EH∥FG,
    ∴四邊形EFGH是平行四邊形(3分)
    ∵三棱錐A-BCD是正三棱錐,
    ∴A在底面上的射影O是△BCD的中心,
    ∴DO⊥BC,
    ∴AD⊥BC,
    ∴HG⊥EH,四邊形EFGH是矩形(5分)
    (2)當(dāng)AP=a時(shí),平面PBC⊥平面EFGH.(7分)
    證明如下:
    作CP⊥AD于P點(diǎn),連接BP,
    ∵AD⊥BC,
    ∴AD⊥面BCP(10分)
    ∵HG∥AD,
    ∴HG⊥面BCP,HG?面EFGH?面BCP⊥面EFGH,
    在Rt△APC中,∠CAP=30°,AC=a,
    ∴AP=a(12分)
    分析:(1)先利用AD∥面EFGH?AD∥HG,同理EF∥FG?四邊形EFGH是平行四邊形.再利用AD⊥BC?HG⊥EH?四邊形EFGH是矩形.
    (2)作CP⊥AD于P點(diǎn),連接BP,再由AD⊥BC?AD⊥面BCP,證得HG⊥面BCP?平面PBC⊥平面EFGH.然后在Rt△APC中,求出AP即可.
    點(diǎn)評(píng):本題考查平面和平面垂直的判定和性質(zhì).在證明面面垂直時(shí),其常用方法是在其中一個(gè)平面內(nèi)找兩條相交直線和另一平面內(nèi)的某一條直線垂直.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,在正三棱錐A-BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分別交AB、BD、DC、CA于點(diǎn)E、F、G、H.
    (1)判定四邊形EFGH的形狀,并說明理由.
    (2)設(shè)P是棱AD上的點(diǎn),當(dāng)AP為何值時(shí),平面PBC⊥平面EFGH,請(qǐng)給出證明.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在正三棱錐A-BCD中,M、N分別是AD、CD的中點(diǎn),BM⊥MN,則正三棱錐的側(cè)面與底面所成角的正切值為( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在正三棱錐A-BCD中,底面正三角形BCD的邊長(zhǎng)為2,點(diǎn)E是AB的中點(diǎn),AC⊥DE,則正三棱錐A-BCD的體積是
    2
    3
    2
    3

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在正三棱錐A-BCD中,E、F分別是AB、BC的中點(diǎn),EF⊥DE,且BC=1,則正三棱錐A-BCD的體積是
    2
    24
    2
    24

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年內(nèi)蒙古高三第一次月考理科數(shù)學(xué)卷 題型:選擇題

    如圖,在正三棱錐ABCD中,點(diǎn)E、F分別是AB、BC的中點(diǎn),,則ABCD的體積為            (    )

        A.         B.   

        C.         D.

                                                                  

     

    查看答案和解析>>

    同步練習(xí)冊(cè)答案