亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    已知橢圓=1按向量a=(t-3,t2)(t∈R)平移后得到曲線E,設(shè)曲線E的右焦點為P.

    (1)求P點軌跡C的方程;

    (2)A、B為曲線C上的兩點,F(0,),且(m∈R),求∠AOB(O為坐標(biāo)原點)的最大值.

    (文)已知函數(shù)f(x)=xn+1(n∈N*,x≠0).

    (1)討論函數(shù)f(x)圖象的對稱性,并指出其一條對稱軸或一個對稱中心;

    (2)令an=f′(x),求數(shù)列{an}的前n項和Sn.

    答案:解:(1)設(shè)平移后的右焦點為P(x,y),易得已知橢圓的右焦點為F1(3,0),

    +a=,即(3,0)+(t-3,t2)=(x,y),∴(t∈R),即軌跡C的方程為y=x2.

    (2)易知F(0,)為曲線C的焦點,又AF=mBF(m∈R).

    設(shè)A(x1,x12),B(x2,x22),其中x1>0,x2<0.則kOA==x1,kOB==x2.

    ∴tan∠AOB=.?設(shè)直線AB的方程為y=kx+,代入y=x2,得x2-kx-=0,

    ∴x2x1=-,

    代入?得tan∠AOB==(x2-x1)=-(x1-x2)≤-×2

    =-(當(dāng)且僅當(dāng)AB∥x軸時取等號).

    ∴∠AOB≤π-arctan,即∠AOB的最大值為π-arctan.

    (文)解:(1)當(dāng)n為偶數(shù)時,因為f(-x)=(-x)n+1=xn+1=f(x),即函數(shù)f(x)為偶函數(shù),所以其圖象關(guān)于y軸對稱.2分

    當(dāng)n為奇數(shù)時,因為f(-x)=(-x)n+1=-xn+1,所以=1.

    所以其圖象關(guān)于點(0,1)中心對稱.

    〔或令g(x)=f(x)-1=xn,所以g(-x)=(-x)n=-xn=-g(x),即g(x)為奇函數(shù).

    所以g(x)的圖象關(guān)于原點對稱,故函數(shù)f(x)的圖象關(guān)于點(0,1)中心對稱〕

    (2)an=f′(x)=nxn-1,6分所以Sn=1+2x+3x2+…+nxn-1.#當(dāng)x=1時,Sn=;

    當(dāng)x≠1時,#式兩邊同乘x,得xSn=x+2x2+3x3+…+(n-1)xn-1+nxn.?

    ?式-#式可得Sn=.

    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    給出以下5個命題:
    ①曲線x2-(y-1)2=1按
    a
    =(1,-2)
    平移可得曲線(x+1)2-(y-3)2=1;
    ②設(shè)A、B為兩個定點,n為常數(shù),|
    PA
    |-|
    PB
    |=n
    ,則動點P的軌跡為雙曲線;
    ③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
    ④A、B是平面內(nèi)兩定點,平面內(nèi)一動點P滿足向量
    AB
    AP
    夾角為銳角θ,且滿足 |
    PB
    | |
    AB
    | +
    PA
    AB
    =0
    ,則點P的軌跡是圓(除去與直線AB的交點);
    ⑤已知正四面體A-BCD,動點P在△ABC內(nèi),且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
    其中所有真命題的序號為
     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    本題有(1)、(2)、(3)三個選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
    (1).選修4-2:矩陣與變換
    已知矩陣A=
    1a
    -1b
    ,A的一個特征值λ=2,其對應(yīng)的特征向量是α1=
    2
    1

    (Ⅰ)求矩陣A;
    (Ⅱ)若向量β=
    7
    4
    ,計算A2β的值.

    (2).選修4-4:坐標(biāo)系與參數(shù)方程
    已知橢圓C的極坐標(biāo)方程為ρ2=
    12
    3cos2θ+4sin2θ
    ,點F1,F(xiàn)2為其左、右焦點,直線l的參數(shù)方程為
    x=2+
    2
    2
    t
    y=
    2
    2
    t
    (t為參數(shù),t∈R).求點F1,F(xiàn)2到直線l的距離之和.
    (3).選修4-5:不等式選講
    已知x,y,z均為正數(shù).求證:
    x
    yz
    +
    y
    zx
    +
    z
    xy
    1
    x
    +
    1
    y
    +
    1
    z

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

    本題有(1)、(2)、(3)三個選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
    (1).選修4-2:矩陣與變換
    已知矩陣A=
    1a
    -1b
    ,A的一個特征值λ=2,其對應(yīng)的特征向量是α1=
    2
    1

    (Ⅰ)求矩陣A;
    (Ⅱ)若向量β=
    7
    4
    ,計算A2β的值.

    (2).選修4-4:坐標(biāo)系與參數(shù)方程
    已知橢圓C的極坐標(biāo)方程為ρ2=
    12
    3cos2θ+4sin2θ
    ,點F1,F(xiàn)2為其左、右焦點,直線l的參數(shù)方程為
    x=2+
    2
    2
    t
    y=
    2
    2
    t
    (t為參數(shù),t∈R).求點F1,F(xiàn)2到直線l的距離之和.
    (3).選修4-5:不等式選講
    已知x,y,z均為正數(shù).求證:
    x
    yz
    +
    y
    zx
    +
    z
    xy
    1
    x
    +
    1
    y
    +
    1
    z

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省福州市泉港二中高三(上)第11周周考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

    本題有(1)、(2)、(3)三個選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
    (1).選修4-2:矩陣與變換
    已知矩陣,A的一個特征值λ=2,其對應(yīng)的特征向量是
    (Ⅰ)求矩陣A;
    (Ⅱ)若向量,計算A2β的值.

    (2).選修4-4:坐標(biāo)系與參數(shù)方程
    已知橢圓C的極坐標(biāo)方程為,點F1,F(xiàn)2為其左、右焦點,直線l的參數(shù)方程為(t為參數(shù),t∈R).求點F1,F(xiàn)2到直線l的距離之和.
    (3).選修4-5:不等式選講
    已知x,y,z均為正數(shù).求證:

    查看答案和解析>>

    同步練習(xí)冊答案