亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個全等的等腰三角形作為側(cè)面制作一個正四棱錐S-ABCD(底面是正方形,頂點在底面的射影是底面中心的四棱錐).
    (1)過此棱錐的高以及一底邊中點F作棱錐的截面(如圖),設(shè)截面三角形面積為y,將y表為x的函數(shù);
    (2)求y的最大值及此時x的值;
    (3)在第(2)問的條件下,設(shè)F是CD的中點,問是否存在這樣的動點P,它在此棱錐的表面(包含底面ABCD)運動,且FP⊥AC.如果存在,在圖中畫出其軌跡并計算軌跡的長度,如果不存在,說明理由.
    【答案】分析:(1)在直角三角形中根據(jù)兩條邊長利用勾股定理做出四棱錐的高,即可求得截面三角形面積的函數(shù)表達(dá)式;
    (2)利用基本不等式,可求最值;
    (3)取BC的中點G,SC中點T,連接FG,GT,TF,證明AC⊥平面GFT即可得到結(jié)論,從而可求軌跡的長度.
    解答:解:(1)由題意,y====(0<x<10)(4分)
    (2)y===
    當(dāng)且僅當(dāng)x2=100-x2(0<x<10),即x=5時取得最大值.…..(9分)
    (3)存在這樣的點的軌跡,下面說明:
    取BC的中點G,SC中點T,連接FG,GT,TF,F(xiàn)G∩AC=H,則GF∥BD,TH∥SO
    ∵SO⊥AC,BD⊥AC
    ∴AC⊥GF,AC⊥TH
    ∵GF∩TH=H
    ∴AC⊥平面GFT.
    ∴只要P在平面GFT與棱錐的表面的交線上運動,均有FP⊥AC.

    此時,由中位線性質(zhì)可知,△GFT的周長l==++)=
    在(1)的條件下,l=….(14分)
    點評:本題考查函數(shù)模型的構(gòu)建,考查基本不等式的運用,考查線面垂直,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個全等的等腰三角形作為側(cè)面制作一個正四棱錐S-ABCD(底面是正方形,頂點在底面的射影是底面中心的四棱錐).
    (1)過此棱錐的高以及一底邊中點F作棱錐的截面(如圖),設(shè)截面三角形面積為y,將y表為x的函數(shù);
    (2)求y的最大值及此時x的值;
    (3)在第(2)問的條件下,設(shè)F是CD的中點,問是否存在這樣的動點P,它在此棱錐的表面(包含底面ABCD)運動,且FP⊥AC.如果存在,在圖中畫出其軌跡并計算軌跡的長度,如果不存在,說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個全等的等腰三角形作為側(cè)面制作一個正四棱錐S-ABCD(底面是正方形,頂點在底面的射影是底面中心的四棱錐).
    (1)過此棱錐的高以及一底邊中點F作棱錐的截面(如圖),設(shè)截面三角形面積為y,求y的最大值及y取最大值時的x的值;
    (2)空間一動點P滿足
    SP
    =a
    SA
    +b
    SB
    +c
    SC
    (a+b+c=1),在第(1)問的條件下,求|
    SP
    |
    的最小值,并求取得最小值時a,b,c的值;
    (3)在第(1)問的條件下,設(shè)F是CD的中點,問是否存在這樣的動點Q,它在此棱錐的表面(包含底面ABCD)運動,且FQ⊥AC?如果存在,計算其運動軌跡的長度,如果不存在,說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    一塊邊長為10的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,試建立容器的容積的函數(shù)關(guān)系式,并求出函數(shù)的定義域.

     

     

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2011年廣東省惠州市高二上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

     

     (本小題滿分14分)一塊邊長為10的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,試建立容器的容積的函數(shù)關(guān)系式,并求出函數(shù)的定義域.

     

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市樹德中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

    一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個全等的等腰三角形作為側(cè)面制作一個正四棱錐S-ABCD(底面是正方形,頂點在底面的射影是底面中心的四棱錐).
    (1)過此棱錐的高以及一底邊中點F作棱錐的截面(如圖),設(shè)截面三角形面積為y,將y表為x的函數(shù);
    (2)求y的最大值及此時x的值;
    (3)在第(2)問的條件下,設(shè)F是CD的中點,問是否存在這樣的動點P,它在此棱錐的表面(包含底面ABCD)運動,且FP⊥AC.如果存在,在圖中畫出其軌跡并計算軌跡的長度,如果不存在,說明理由.

    查看答案和解析>>

    同步練習(xí)冊答案