亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    如圖所示,矩形中,⊥平面,上的點(diǎn),且⊥平面.

    (1)求證:⊥平面
    (2)求三棱錐的體積.

    (1)只要證明 (2)

    解析試題分析:解:(1)∵平面,,
    平面,∴
    又∵平面,∴,
    又∵,∴平面.

    (2)由題意可得,的中點(diǎn),連接,
    平面,∴,又∵,
    的中點(diǎn),
    ∴在中,,
    平面,∴平面.
    中,,
    ××=1,
    .
    考點(diǎn):空間中直線與直線之間的位置關(guān)系;棱柱、棱錐、棱臺(tái)的體積;直線與平面垂直的性質(zhì).
    點(diǎn)評(píng):本題主要考查垂直關(guān)系,利用線面垂直的定義和判定定理,進(jìn)行線線垂直與線面垂直
    的轉(zhuǎn)化;求三棱錐體積常用的方法:換底法.

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    如圖,在四棱錐中,底面為菱形,的中點(diǎn)。

    (1)若,求證:平面;
    (2)點(diǎn)在線段上,,試確定的值,使;

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    如圖,在四棱錐中, 平面,,,.
    (Ⅰ)求證:平面;
    (Ⅱ)求棱錐的高.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    如圖,多面體中,四邊形是邊長(zhǎng)為的正方形,平面垂直于平面,且,.
    (Ⅰ)求證:;
    (Ⅱ)若分別為棱的中點(diǎn),求證:∥平面;
    (Ⅲ)求多面體的體積.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知三棱錐,平面平面,AB=AD=1,AB⊥AD,DB=DC,DB⊥DC

    (1) 求證:AB⊥平面ADC;
    (2) 求三棱錐的體積;
    (3) 求二面角的正切值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    在如圖所示的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn).

    (Ⅰ)求證:AF∥平面BCE;
    (Ⅱ)求證:平面BCE⊥平面CDE.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).

    (Ⅰ)證明: BC1//平面A1CD;
    (Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    如圖,四棱錐P-ABCD中,,,都是等邊三角形.

    (Ⅰ)證明:
    (Ⅱ)求二面角A-PD-C的大小.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    如圖甲,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).

    (Ⅰ)求證:DC平面ABC;
    (Ⅱ)設(shè),求三棱錐A-BFE的體積.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案