亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且.

    (Ⅰ)求橢圓的離心率;

    (Ⅱ)D是過三點(diǎn)的圓上的點(diǎn),D到直線的最大距離等于橢圓長軸的長,求橢圓的方程;

    (Ⅲ)在(2)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn)使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由.

     

    【答案】

    (1)橢圓的離心率     (2)橢圓方程為.  (3)的取值范圍是

    【解析】I)由于可以根據(jù),把B點(diǎn)坐標(biāo)用b,c表示出來,然后利用建立關(guān)于a,b,c的方程,即可確定e的值.

    (II)先求出過三點(diǎn)A、B、F2的圓的方程,然后根據(jù)圓到直線上的最大距離應(yīng)為圓心到直線的距離加上半徑.再結(jié)合離心率即可確定橢圓C的方程.

    (III)解題的關(guān)鍵是菱形條件就是然后坐標(biāo)化再由直線方程與橢圓方程聯(lián)立,利用韋達(dá)定理差別式這個(gè)通式通法,解決問題.

    解:(Ⅰ)設(shè)B(x0,0),由(c,0),A(0,b), ,由于 即中點(diǎn).故,故橢圓的離心率   --4分

    (Ⅱ)由(1)知于是,0), B,

    △ABF的外接圓圓心為(,0),半徑r=|FB|=,D到直線的最大距離等于,所以圓心到直線的距離為,所以,解得=2,∴c =1,b=,  所求橢圓方程為.    ------------------8分

    (Ⅲ)由(2)知,

               代入得  

    設(shè),  ------9分

    由于菱形對(duì)角線垂直,則

        -------------10分

    由已知條件知     

    故存在滿足題意的點(diǎn)P且的取值范圍是

     

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    已知中心在坐標(biāo)原點(diǎn)、焦點(diǎn)在x軸上橢圓的離心率e=
    3
    3
    ,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
    (1)求該橢圓的標(biāo)準(zhǔn)方程;
    (2)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線l1過F2且與x軸垂直,動(dòng)直線l2與y軸垂直,l2交l1于點(diǎn)P,求線段PF1的垂直平分線與l2的交點(diǎn)M的軌跡方程,并指明曲線類型.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (08年四川卷理)設(shè)橢圓的左、右焦點(diǎn)分別是,離心率,右準(zhǔn)線上的兩動(dòng)點(diǎn)、,且

    (Ⅰ)若,求、的值;

    (Ⅱ)當(dāng)最小時(shí),求證共線.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (本小題滿分12分) 已知橢圓的離心率,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切。(I)求a與b;(II)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線且與x軸垂直,動(dòng)直線軸垂直,于點(diǎn)P,求線段PF1的垂直平分線與的交點(diǎn)M的軌跡方程,并指明曲線類型。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

    設(shè)橢圓的左、右焦點(diǎn)分別是F1、F2,離心率,右準(zhǔn)線l上的兩動(dòng)點(diǎn)M、N,且,
    (Ⅰ)若,求a、b的值;
    (Ⅱ)當(dāng)最小時(shí),求證共線。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省黃山市休寧中學(xué)高三(上)數(shù)學(xué)綜合練習(xí)試卷1(文科)(解析版) 題型:解答題

    已知中心在坐標(biāo)原點(diǎn)、焦點(diǎn)在x軸上橢圓的離心率,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
    (1)求該橢圓的標(biāo)準(zhǔn)方程;
    (2)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線l1過F2且與x軸垂直,動(dòng)直線l2與y軸垂直,l2交l1于點(diǎn)P,求線段PF1的垂直平分線與l2的交點(diǎn)M的軌跡方程,并指明曲線類型.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案