亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    設(shè)函數(shù)f(x)=ax3+bx+c是定義在R上的奇函數(shù),且函數(shù)f(x)的圖象在x=1處的切線方程為
    x=-
    2
    3
    +
    1
    3
    t
    y=t
    (t為參數(shù))

    (Ⅰ)求a,b,c的值;
    (Ⅱ)若對(duì)任意x∈(0,1]都有f(x)≤
    k
    x
    成立,求實(shí)數(shù)k的取值范圍;
    (Ⅲ)若對(duì)任意x(0,3]都有|f(x)-mx|≤16成立,求實(shí)數(shù)m的取值范圍.
    分析:(1)求a,b,c的值,可由函數(shù)f(x)=ax3+bx+c是定義在R上的奇函數(shù),且函數(shù)f(x)的圖象在x=1處的切線方程為y=3x+2轉(zhuǎn)化為方程解出a,b,c的值;
    (2)若對(duì)任意x∈(0,1]都有 f(x)≤
    k
    x
    成立,求實(shí)數(shù)k的取值范圍,可轉(zhuǎn)化為對(duì)任意x∈(0,1]都有xf(x)≤k,下轉(zhuǎn)化為求函數(shù)xf(x)在(0,1]的最大值,判斷出參數(shù)的取值范圍問題;
    (3)若對(duì)任意x∈(0,3]都有|f(x)-mx|≤16成立,求實(shí)數(shù)m的取值范圍,可先將問題轉(zhuǎn)化為
    m≥-x2-
    16
    x
    +6
    m≤-x2+
    16
    x
    +6
    對(duì)任意x∈(0,3]恒成立,求出參數(shù)m的取值范圍來(lái).
    解答:解:(1)∵函數(shù)f(x)=ax3+bx+c是定義在R上的奇函數(shù),∴f(-x)=-f(x),
    ∵a(-x)3+b(-x)+c=-(ax3+bx+c),∴c=0.                                       (2分)
    又f(x)在x=1處的切線方程為y=3x+2,
    由f'(x)=3ax2+b,∴f'(1)=3,且f(1)=5,
    3a+b=3
    a+b=5
    a=-1
    b=6
    .                        (5分)
    (2)f(x)=-x3+6x,
    依題意 -x3+6x≤
    k
    x
    對(duì)任意x∈(0,1]恒成立,
    ∴-x4+6x2≤k對(duì)任意x∈(0,1]恒成立,…(7分)
    即  k≥-(x2-3)2+9對(duì)任意x∈(0,1]恒成立,∴k≥5.                                         (9分)
    (3)|f(x)-mx|≤16,即-16≤f(x)-mx≤16,
    -x3+6x-mx≤16
    -x3+6x-mx≥-16
    ,
    m≥-x2-
    16
    x
    +6
    m≤-x2+
    16
    x
    +6
    對(duì)任意x∈(0,3]恒成立,(11分)
    g(x)=-x2-
    16
    x
    +6
    ,其中x∈(0,3],則  g′(x)=-2x+
    16
    x2
    =-
    2
    x2
    (x3-8)

    ∴當(dāng)x∈(0,2)時(shí),g'(x)>0,g(x)在(0,2)上單調(diào)遞增,
    當(dāng)x∈(2,3)時(shí),g'(x)<0,g(x)在(2,3)上單調(diào)遞減,
    ∴g(x)在(0,3]上的最大值是g(2)=-6,則m≥-6.    (13分)
    h(x)=-x2+
    16
    x
    +6

    其中x∈(0,3],則  h′(x)=-2x-
    16
    x2
    <0
    ,
    所以 h(x)在(0,3)上單調(diào)遞減,
    ∴即h(x)在(0,3]上的最小值是 h(3)=
    7
    3
    ,則 m≤
    7
    3
    ;(16分)
    綜上,可得所求實(shí)數(shù)m的取值范圍是[-6,
    7
    3
    ]
    .(18分)
    點(diǎn)評(píng):本題考查導(dǎo)數(shù)在最大值與最小值問題中的應(yīng)用,解題的關(guān)鍵是利用導(dǎo)數(shù)研究出函數(shù)的單調(diào)性,判斷出函數(shù)的最值,本題第三小題是一個(gè)恒成立的問題,恒成立的問題一般轉(zhuǎn)化最值問題來(lái)求解,本題即轉(zhuǎn)化為用單調(diào)性求函數(shù)在閉區(qū)間上的最值的問題,求出最值再判斷出參數(shù)的取值.本題運(yùn)算量過(guò)大,解題時(shí)要認(rèn)真嚴(yán)謹(jǐn),避免變形運(yùn)算失誤,導(dǎo)致解題失。
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    設(shè)函數(shù)f(x)=ax+
    xx-1
    (x>1),若a是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取一個(gè)數(shù),求f(x)>b恒成立的概率.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    設(shè)函數(shù)f(x)=ax+b的圖象經(jīng)過(guò)點(diǎn)(1,7),又其反函數(shù)的圖象經(jīng)過(guò)點(diǎn)(4,0),求函數(shù)的解析式,并求f(-2)、f(
    12
    )的值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    (2009•楊浦區(qū)一模)(文)設(shè)函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
    -1
    -1

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    精英家教網(wǎng)設(shè)函數(shù)f(x)=(a
    x
    -
    1
    x
    )n
    ,其中n=3
    π
    sin(π+x)dx,a為如圖所示的程序框圖中輸出的結(jié)果,則f(x)的展開式中常數(shù)項(xiàng)是(  )
    A、-
    5
    2
    B、-160
    C、160
    D、20

    查看答案和解析>>

    同步練習(xí)冊(cè)答案