亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    對于函數(shù)f(x),若存在區(qū)間M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”.給出下列4個函數(shù):
    ①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
    π2
    x
    ;④f(x)=ex.其中存在“穩(wěn)定區(qū)間”的函數(shù)有
     
    (填出所有滿足條件的函數(shù)序號)
    分析:根據(jù)“穩(wěn)定區(qū)間”的定義,我們要想說明函數(shù)存在“穩(wěn)定區(qū)間”,我們只要舉出一個符合定義的區(qū)間M即可,但要說明函數(shù)沒有“穩(wěn)定區(qū)間”,我們可以用反證明法來說明.由此對四個函數(shù)逐一進行判斷,即可得到答案.
    解答:解:①中,若f(x)=(x-1)2存在“穩(wěn)定區(qū)間”
    如當0<x<1時,0<y<1.“穩(wěn)定區(qū)間”:[0,1];
    ②中,由冪函數(shù)的性質(zhì)我們易得,M=[0,1]為函數(shù)f(x)=|2x-1|的“穩(wěn)定區(qū)間”;
    ③中,由余弦型函數(shù)的性質(zhì)我們易得,M=[0,1]為函數(shù) f(x)=cos
    π
    2
    x
    的“穩(wěn)定區(qū)間”;
    ④中,若f(x)=ex存在“穩(wěn)定區(qū)間”
    則ea+1=a,eb+1=b
    即ex=x-1有兩個解,即函數(shù)y=ex與函數(shù)y=x-1的圖象有兩個交點,
    這與函數(shù)y=ex與函數(shù)y=x-1的圖象沒有交點相矛盾,故假設(shè)錯誤,
    即f(x)=ex不存在“穩(wěn)定區(qū)間”
    故答案:①②③.
    點評:本題考查的知識點是函數(shù)的概念及其構(gòu)造要求,在說明一個函數(shù)沒有“穩(wěn)定區(qū)間”時,利用函數(shù)的性質(zhì)、圖象結(jié)合反證法證明是解答本題的關(guān)鍵.
    練習冊系列答案
    相關(guān)習題

    科目:高中數(shù)學 來源: 題型:

    對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實數(shù)a,b(a<b),使當x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“科比函數(shù)”.若函數(shù)f(x)=k+
    x+2
    是“科比函數(shù)”,則實數(shù)k的取值范圍是
     

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.如果函數(shù)
    f(x)=ax2+bx+1(a>0)有兩個相異的不動點x1,x2
    (1)若x1<1<x2,且f(x)的圖象關(guān)于直線x=m對稱,求證:
    12
    <m<1;
    (2)若|x1|<2且|x1-x2|=2,求b的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點”.函數(shù)f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f[f(x)]=x}.
    (1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
    (2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數(shù)f(x)的不動點.若函數(shù)f(x)=
    x2+a
    bx-c
    (b,c∈N*)有且僅有兩個不動點0和2,且f(-2)<-
    1
    2

    (1)試求函數(shù)f(x)的單調(diào)區(qū)間,
    (2)已知各項不為0的數(shù)列{an}滿足4Sn•f(
    1
    an
    )=1,其中Sn表示數(shù)列{an}的前n項和,求證:(1-
    1
    an
    )an+1
    1
    e
    <(1-
    1
    an
    )an

    (3)在(2)的前題條件下,設(shè)bn=-
    1
    an
    ,Tn表示數(shù)列{bn}的前n項和,求證:T2011-1<ln2011<T2010

    查看答案和解析>>

    同步練習冊答案