亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    設(shè)離心率的橢圓的左、右焦點(diǎn)分別為F1、F2,P是x軸正半軸上一點(diǎn),以PF1為直徑的圓經(jīng)過橢圓M短軸端點(diǎn),且該圓和直線相切,過點(diǎn)P的直線與橢圓M相交于相異兩點(diǎn)A、C.
    (Ⅰ)求橢圓M的方程;
    (Ⅱ)若相異兩點(diǎn)A、B關(guān)于x軸對(duì)稱,直線BC交x軸與點(diǎn)Q,求的取值范圍.
    【答案】分析:(Ⅰ)設(shè)以|PF1|為直徑的圓經(jīng)過橢圓M短軸端點(diǎn)N,則|NF1|=a,由可得a=2c,由此可得,再由|PF1|的長可判斷F2為圓的圓心,根據(jù)圓與直線相切,可解得c值,從而可求得a,b;
    (Ⅱ)設(shè)點(diǎn)A(x1,y1),C(x2,y2),易知點(diǎn)B(x1,-y1),設(shè)直線PA的方程為y=k(x-3),代入橢圓方程消掉y得x的二次方程,由△>0得k2范圍,由點(diǎn)斜式寫出直線BC的方程,令y=0,由韋達(dá)定理可得Q點(diǎn)橫坐標(biāo),利用向量數(shù)量積運(yùn)算及韋達(dá)定理可把表示為k的函數(shù),由k2的范圍即可求得的范圍;
    解答:解:(Ⅰ)設(shè)以|PF1|為直徑的圓經(jīng)過橢圓M短軸端點(diǎn)N,
    ∴|NF1|=a,∵,∴a=2c,
    ,|PF1|=2a.
    ∴F2(c,0)是以|PF1|為直徑的圓的圓心,
    ∵該圓和直線相切,
    ,解得
    ∴橢圓M的方程為:
    (Ⅱ)設(shè)點(diǎn)A(x1,y1),C(x2,y2),則點(diǎn)B(x1,-y1),
    設(shè)直線PA的方程為y=k(x-3),
    聯(lián)立方程組,消掉y,化簡整理得(4k2+3)x2-24k2x+36k2-12=0,
    由△=(24k22-4•(3+4k2)•(36k2-12)>0,得

    直線BC的方程為:
    令y=0,則
    ∴Q點(diǎn)坐標(biāo)為

    =
    =
    =
    ,

    點(diǎn)評(píng):本題考查直線、橢圓方程及其位置關(guān)系,考查向量的數(shù)量積運(yùn)算,考查函數(shù)思想,考查學(xué)生分析解決問題的能力,綜合性強(qiáng),難度較大,對(duì)能力要求較高.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    (2013•大連一模)設(shè)離心率e=
    1
    2
    的橢圓M:
    x2
    a2
    +
    y2
    b2
    =1(a>b>0)
    的左、右焦點(diǎn)分別為F1、F2,P是x軸正半軸上一點(diǎn),以PF1為直徑的圓經(jīng)過橢圓M短軸端點(diǎn),且該圓和直線x+
    3
    y+3=0
    相切,過點(diǎn)P直線橢圓M相交于相異兩點(diǎn)A、C.
    (Ⅰ)求橢圓M的方程;
    (Ⅱ)若相異兩點(diǎn)A、B關(guān)于x軸對(duì)稱,直線BC交x軸與點(diǎn)Q,求Q點(diǎn)坐標(biāo).

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2012•鄭州二模)已知圓C的圓心為C(m,0),m<3,半徑為
    5
    ,圓C與離心率e>
    1
    2
    的橢圓
    x2
    a2
    +
    y2
    b2
    =1
    (a>b>0)的其中一個(gè)公共點(diǎn)為A(3,l),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn).
    (I)求圓C的標(biāo)準(zhǔn)方程;
    (II)若點(diǎn)P的坐標(biāo)為(4,4),試探究直線PF1與圓C能否相切?若能,設(shè)直線PF1與橢圓E相交于A,B兩點(diǎn),求△ABF2的面積;若不能,請(qǐng)說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:安徽省高考真題 題型:解答題

    已知橢圓(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓短半軸長半徑的圓與直線y=x+2相切,
    (Ⅰ)求a與b;
    (Ⅱ)設(shè)該橢圓的左,右焦點(diǎn)分別為F1和F2,直線l1過F2且與x軸垂直,動(dòng)直線l2與y軸垂直,l2交l1于點(diǎn)P,求線段PF1垂直平分線與l2的交點(diǎn)M的軌跡方程,并指明曲線類型。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2013年遼寧省大連市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

    設(shè)離心率的橢圓的左、右焦點(diǎn)分別為F1、F2,P是x軸正半軸上一點(diǎn),以PF1為直徑的圓經(jīng)過橢圓M短軸端點(diǎn),且該圓和直線相切,過點(diǎn)P直線橢圓M相交于相異兩點(diǎn)A、C.
    (Ⅰ)求橢圓M的方程;
    (Ⅱ)若相異兩點(diǎn)A、B關(guān)于x軸對(duì)稱,直線BC交x軸與點(diǎn)Q,求Q點(diǎn)坐標(biāo).

    查看答案和解析>>

    同步練習(xí)冊(cè)答案