已知函數(shù)

的圖像過點P(-1,2),且在點P處的切線恰好與直線

垂直。
(1)求函數(shù)

的解析式;
(2)若函數(shù)

在區(qū)間

上單調(diào)遞增,求實數(shù)m的取值范圍。
(Ⅰ)

(Ⅱ)

(1)


,

由題意有

,



……………..………………………………………………..6分
(2)令

,得

或

,


在區(qū)間

和

上均是增函數(shù),

由題意,有

或

,


或

,


練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)已知函數(shù)

的定義域為

.
(Ⅰ)求實數(shù)

的值;(Ⅱ)探究

是否是

上的單調(diào)函數(shù)?若是,請證明;若不是,請說明理由; (Ⅲ)求證:

,

(其中

為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=x3-3ax2+2bx在點x=1處有極小值-1,試確定a,b的值,并求出f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
m為實數(shù),函數(shù)

,

.
(1)若

≥4,求
m的取值范圍;
(2)當(dāng)
m>0時,求證

在

上是單調(diào)遞增函數(shù);
(3)若

對于一切

,不等式

≥1恒成立,求實數(shù)
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在半徑為

的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽槎嗌贂r,它的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知

的圖象經(jīng)過點

,且在

處的切線方程是

(1) 求

的解析式;
(2) 點

是直線

上的動點,自點

作函數(shù)

的圖象的兩條切線

、

(點

、

為切點),求證直線

經(jīng)過一個定點,并求出定點的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)

(1) 若函數(shù)

是單調(diào)遞增函數(shù),求實數(shù)

的取值范圍;
(2)當(dāng)

時,兩曲線

有公共點P,設(shè)曲線

在P處的切線分別為

,若切線

與

軸圍成一個等腰三角形,求P點坐標(biāo)和

的值;
(3)當(dāng)

時,討論關(guān)于

的方程

的根的個數(shù)

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=

(1)若h(x)=f(x)-g(x)存在單調(diào)增區(qū)間,求a的取值范圍;
(2)是否存在實數(shù)a>0,使得方程

在區(qū)間

內(nèi)有且只有兩個不相等的實數(shù)根?若存在,求出a的取值范圍?若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
f(
x)=
x3+
mx2-
x+2(
m∈
R)
如果函數(shù)的單調(diào)減區(qū)間恰為(-

,1),求函數(shù)
f(
x)的解析式;
(2)若
f(
x)的導(dǎo)函數(shù)為
f '(
x),對任意
x∈(0,+∞),不等式
f '(
x)≥2
xlnx-1恒成立,求實數(shù)
m的取值范圍.
查看答案和解析>>