亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    已知函數(shù)f(x)是定義在[-2,2]上的奇函數(shù),當x∈[-2,0)時,數(shù)學公式(t為常數(shù)).
    (1)求函數(shù)f(x)的解析式;
    (2)當t∈[2,6]時,求f(x)在[-2,0]上的最小值,及取得最小值時的x,并猜想f(x)在[0,2]上的單調(diào)遞增區(qū)間(不必證明);
    (3)當t≥9時,證明:函數(shù)y=f(x)的圖象上至少有一個點落在直線y=14上.

    解:(1)x∈(0,2]時,-x∈[-2,0),則,
    ∵函數(shù)f(x)是定義在[-2,2]上的奇函數(shù),即f(-x)=-f(x),
    ,即,又可知f(0)=0,
    ∴函數(shù)f(x)的解析式為,x∈[-2,2];
    (2),∵t∈[2,6],x∈[-2,0],∴,f(x)<0
    ,∴,
    時,
    猜想f(x)在[0,2]上的單調(diào)遞增區(qū)間為
    (3)t≥9時,任取-2≤x1<x2≤2,
    ,
    ∴f(x)在[-2,2]上單調(diào)遞增,即f(x)∈[f(-2),f(2)],
    即f(x)∈[4-2t,2t-4],t≥9,∴4-2t≤-14,2t-4≥14,
    ∴14∈[4-2t,2t-4],∴當t≥9時,函數(shù)y=f(x)的圖象上至少有一個點落在直線y=14上.
    分析:(1)設x∈(0,2]?-x∈[-2,0)?,由f(x)為奇函數(shù)可得f(-x)=-f(x),代入可求f(x)x∈(0,2];
    由奇函數(shù)的性質(zhì)可知f(0)=0,從而可得f(x) x∈[-2,2]
    (2)由知<0,x∈[-2,0],t∈[2,6]
    利用平均值不等式可得,(當時取等號)
    (3)利用單調(diào)性的定義(或?qū)?shù)法)判斷函數(shù)在[-2,2]上單調(diào)性,從而確定函數(shù)的值域,然后證明14在值域內(nèi)即可
    點評:本題綜合考查函數(shù)的解析式的求解、利用均值不等式求函數(shù)的最值、及利用定義或?qū)?shù)法判斷函數(shù)的單調(diào)性,在利用均值不等式求最值時,要注意驗證各項的符號及等號成立的條件.
    練習冊系列答案
    相關習題

    科目:高中數(shù)學 來源: 題型:

    已知函數(shù)f(x)=
    2x+2-x
    2
    ,g(x)=
    2x-2-x
    2

    (1)計算:[f(1)]2-[g(1)]2;
    (2)證明:[f(x)]2-[g(x)]2是定值.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    精英家教網(wǎng)已知函數(shù)f(x)=x+
    a
    x
    的定義域為(0,+∞),且f(2)=2+
    2
    2
    .設點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
    (1)求a的值.
    (2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
    (3)設O為坐標原點,求四邊形OMPN面積的最小值.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    已知函數(shù)f(x)=log3
    3
    x
    1-x
    ,M(x1y1),N(x2,y2)
    是f(x)圖象上的兩點,橫坐標為
    1
    2
    的點P滿足2
    OP
    =
    OM
    +
    ON
    (O為坐標原點).
    (Ⅰ)求證:y1+y2為定值;
    (Ⅱ)若Sn=f(
    1
    n
    )+f(
    2
    n
    )+…+f(
    n-1
    n
    )
    ,其中n∈N*,且n≥2,求Sn;
    (Ⅲ)已知an=
    1
    6
    ,                          n=1
    1
    4(Sn+1)(Sn+1+1)
    ,n≥2
    ,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    已知函數(shù)f(x)=log3
    3
    x
    1-x
    ,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
    (1)求證:y1+y2為定值;
    (2)若Sn=f(
    1
    n
    )+f(
    2
    n
    )+…+f(
    n-1
    n
    )(n∈N*,N≥2),求Sn
    (3)在(2)的條件下,若an=
    1
    6
     ,n=1
    1
    4(Sn+1)(Sn+1+1)
    ,n≥2
    (n∈N*),Tn為數(shù)列{an}的前n項和.求Tn

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    已知函數(shù)f(x)=sin(2x-
    π
    6
    ),g(x)=sin(2x+
    π
    3
    ),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

    查看答案和解析>>

    同步練習冊答案