亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    已知函數(shù)

    (1)判斷函數(shù)上的單調(diào)性,并證明你的結(jié)論。

    (2)求出函數(shù)上的最大值與最小值。

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
    ln(2-x2)
    |x+2|-2

    (1)試判斷f(x)的奇偶性并給予證明;
    (2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
    (3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
    {an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
    (文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
    (1)求證:F<0;
    (2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,且
    AB
    AD
    =0
    ,求D2+E2-4F的值;
    (3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
    斷點(diǎn)O、G、H是否共線,并說(shuō)明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    (2012•江西)若函數(shù)h(x)滿足
    ①h(0)=1,h(1)=0;
    ②對(duì)任意a∈[0,1],有h(h(a))=a;
    ③在(0,1)上單調(diào)遞減.則稱h(x)為補(bǔ)函數(shù).已知函數(shù)h(x)=(
    1-xp
    1+λxp
    )
    1
    p
    (λ>-1,p>0)
    (1)判函數(shù)h(x)是否為補(bǔ)函數(shù),并證明你的結(jié)論;
    (2)若存在m∈[0,1],使得h(m)=m,若m是函數(shù)h(x)的中介元,記p=
    1
    n
    (n∈N+)時(shí)h(x)的中介元為xn,且Sn=
    n
    i=1
    xi
    ,若對(duì)任意的n∈N+,都有Sn
    1
    2
    ,求λ的取值范圍;
    (3)當(dāng)λ=0,x∈(0,1)時(shí),函數(shù)y=h(x)的圖象總在直線y=1-x的上方,求P的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(江西卷解析版) 題型:解答題

    若函數(shù)h(x)滿足

    (1)h(0)=1,h(1)=0;

    (2)對(duì)任意,有h(h(a))=a;

    (3)在(0,1)上單調(diào)遞減。則稱h(x)為補(bǔ)函數(shù)。已知函數(shù)

    (1)判函數(shù)h(x)是否為補(bǔ)函數(shù),并證明你的結(jié)論;

    (2)若存在,使得h(m)=m,若m是函數(shù)h(x)的中介元,記時(shí)h(x)的中介元為xn,且,若對(duì)任意的,都有Sn< ,求的取值范圍;

    (3)當(dāng)=0,時(shí),函數(shù)y= h(x)的圖像總在直線y=1-x的上方,求P的取值范圍。

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2012年江西省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

    若函數(shù)h(x)滿足
    ①h(0)=1,h(1)=0;
    ②對(duì)任意a∈[0,1],有h(h(a))=a;
    ③在(0,1)上單調(diào)遞減.則稱h(x)為補(bǔ)函數(shù).已知函數(shù)h(x)=(λ>-1,p>0)
    (1)判函數(shù)h(x)是否為補(bǔ)函數(shù),并證明你的結(jié)論;
    (2)若存在m∈[0,1],使得h(m)=m,若m是函數(shù)h(x)的中介元,記p=(n∈N+)時(shí)h(x)的中介元為xn,且Sn=,若對(duì)任意的n∈N+,都有Sn,求λ的取值范圍;
    (3)當(dāng)λ=0,x∈(0,1)時(shí),函數(shù)y=h(x)的圖象總在直線y=1-x的上方,求P的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2011年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

    (理)已知函數(shù)
    (1)試判斷f(x)的奇偶性并給予證明;
    (2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
    (3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
    {an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
    (文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
    (1)求證:F<0;
    (2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,且,求D2+E2-4F的值;
    (3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
    斷點(diǎn)O、G、H是否共線,并說(shuō)明理由.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案