【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知平面直角坐標(biāo)系,以
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,
點的極坐標(biāo)為
,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出點的直角坐標(biāo)及曲線
的直角坐標(biāo)方程;
(2)若為曲線
上的動點,求
的中點
到直線
:
的距離的最小值.
【答案】(1)點
;
(2)
【解析】試題分析:(1)由的極坐標(biāo)為
,利用
可得
點的直角坐標(biāo),曲線
的參數(shù)方程展開可得:
,利用
以及
可得出直角坐標(biāo)方程;(2)直線
的直角坐標(biāo)方程為
,設(shè)
,則
,利用點到直線的距離公式與三角函數(shù)的單調(diào)性值域即可得出.
試題解析:(1)點的直角坐標(biāo)為
;
由得
①
將,
,
代入①,
可得曲線的直角坐標(biāo)方程為
.
(2)直線
的直角坐標(biāo)方程為
,
設(shè)點的直角坐標(biāo)為
,則
,
那么到直線
的距離:
,
(當(dāng)且僅當(dāng)
時取等號),
所以到直線
的距離的最小值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線經(jīng)過點
,傾斜角為
.在以原點為極點,
軸正半軸為極軸的極坐標(biāo)系中,曲線
的方程為
.
(1)寫出直線的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)直線與曲線
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長都是底面邊長的
倍,
為側(cè)棱
上的點.
(1)求證:.
(2)若⊥平面
,求二面角
的大。
(3)在(2)的條件下,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) .當(dāng)x=2時,函數(shù)
取得極值
.
(1)求函數(shù)的解析式;
(2)若函數(shù) =k有3個解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和為Sn , 若對于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式;
(2)求數(shù)列{nan}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
(
)的離心率為
,直線
:
與以原點為圓心、橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)過橢圓的左頂點
作直線
,與圓
相交于兩點
,
,若
是鈍角三角形,求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,cos2A﹣3cos(B+C)﹣1=0.
(1)求角A的大;
(2)若△ABC的外接圓半徑為1,試求該三角形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx﹣ (a>0),g(x)=4x+
+
,且y=f(x+
)為偶函數(shù).設(shè)集合A={x|t﹣1≤x≤t+1}.
(1)若t=﹣ ,記f(x)在A上的最大值與最小值分別為M,N,求M﹣N;
(2)若對任意的實數(shù)t,總存在x1 , x2∈A,使得|f(x1)﹣f(x2)|≥g(x)對x∈[0,1]恒成立,試求a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com