亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    已知函數(shù)f(x)=ax+bsinx,當(dāng)數(shù)學(xué)公式時,f(x)取得極小值數(shù)學(xué)公式
    (1)求a,b的值;
    (2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:
    ①直線l與曲線S相切且至少有兩個切點(diǎn);
    ②對任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
    試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
    (3)記數(shù)學(xué)公式,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時,問是否存在一個最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請求出M的值;若不存在請說明理由.

    (1)由已知f'(x)=a+bcosx,于是得:代入可得:a=1,b=-2…(3分)
    (2)由f'(x)=1-2cosx=1,得cosx=0,當(dāng)時,cosx=0此時,y1=y2所以是直線l與曲線S的一個切點(diǎn),當(dāng)時,cosx=0,,y1=y2
    所以是直線l與曲線S的一個切點(diǎn) 所以直線l與曲線S相切且至少有兩個切點(diǎn)…(6分)
    對任意x∈R,g(x)-F(x)=(x+2)-(x-2sinx)=2+2sinx≥0
    所以g(x)≥F(x),因此直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”…(9分)
    (3)方法一:,x1的根,即x1=0,也即|x3|<1,|x2|<1…(10分)
    ,
    …(13分)
    所以存在這樣最小正整數(shù)M=2使得|h(x3)-h(x2)|≤M恒成立.…(14分)
    方法二:不妨設(shè)x2<x3,因?yàn)閔'(x)>0,所以h(x)為增函數(shù),所以h(x2)<h(x3
    又因?yàn)閔'(x)-1<0,所以h(x)-x為減函數(shù),所以h(x2)-x2>h(x3)-x3所以0<h(x3)-h(x2)<x3-x2,…(11分)
    即|h(x3)-h(x2)|<|x3-x2|=|x3-x1-(x2-x1)|≤|x3-x1|+|x2-x1|<2…(13分)
    故存在最小正整數(shù)M=2,使得|h(x3)-h(x2)|≤M恒成立…(14分)
    分析:(1)根據(jù)題意,求出函數(shù)的導(dǎo)數(shù)再代入可得方程組,求解即可;
    (2)設(shè)直線l:g(x)=x+2,曲線S:f(x)=ax+bsinx,求出f(x)的導(dǎo)數(shù),因?yàn)橹本斜率為1,由f'(x)=1-2cosx=1可得極值點(diǎn),再驗(yàn)證得到直線與曲線f(x)的切點(diǎn),利用g(x)≥F(x)也可作差得到結(jié)論.
    (3)本問可求出h(x)的最大值和最小值然后轉(zhuǎn)化為|h(x3)-h(x2)|max=|h(x)max-h(x)min|小于某個正整數(shù)M即可;本問題也可以利用函數(shù)的單調(diào)性來求解,只需做一個轉(zhuǎn)化h(x)與x的關(guān)系,為此可構(gòu)造函數(shù)h(x)-x,于是可以證得結(jié)論.
    點(diǎn)評:考查函數(shù)的導(dǎo)數(shù)以及導(dǎo)數(shù)的應(yīng)用:求函數(shù)的極值,最值判斷極值存在的條件,本題中的(2)和(3)是一種新定義問題,如果對定義以及本題題意把握不準(zhǔn),難免會出差錯,甚至無從下手,這就需要多角度分析,比如數(shù)形結(jié)合來分析,再者關(guān)鍵是深刻理解性定義,這樣就能容易解答;第(3)問較為綜合,是一類新穎的函數(shù)問題,解答本題轉(zhuǎn)化與劃歸是精髓,另外結(jié)合要證明的不等式之特點(diǎn),構(gòu)造函數(shù)不失為一種好思維,好方法.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=
    a-x2
    x
    +lnx  (a∈R , x∈[
    1
    2
     , 2])

    (1)當(dāng)a∈[-2,
    1
    4
    )
    時,求f(x)的最大值;
    (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
    34
    的解集為
    (-∞,-2)
    (-∞,-2)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
    2x
    )>3

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
    (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
    (2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
    f(x)   ,  x>0
    -f(x) ,    x<0
     給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
     

    查看答案和解析>>

    同步練習(xí)冊答案