【題目】為響應(yīng)國(guó)家“精準(zhǔn)扶貧、精準(zhǔn)脫貧”的號(hào)召,某貧困縣在精準(zhǔn)推進(jìn)上下功夫,在精準(zhǔn)扶貧上見(jiàn)實(shí)效.根據(jù)當(dāng)?shù)貧夂蛱攸c(diǎn)大力發(fā)展中醫(yī)藥產(chǎn)業(yè),藥用昆蟲的使用相應(yīng)愈來(lái)愈多,每年春暖以后到寒冬前,昆蟲大量活動(dòng)與繁殖,易于采取各種藥用昆蟲.已知一只藥用昆蟲的產(chǎn)卵數(shù)(單位:個(gè))與一定范圍內(nèi)的溫度
(單位:
)有關(guān),于是科研人員在
月份的
天中隨機(jī)選取了
天進(jìn)行研究,現(xiàn)收集了該種藥物昆蟲的
組觀察數(shù)據(jù)如表:
日期 |
|
|
|
|
|
溫度 | |||||
產(chǎn)卵數(shù) |
(1)從這天中任選
天,記這
天藥用昆蟲的產(chǎn)卵數(shù)分別為
、
,求“事件
,
均不小于
”的概率?
(2)科研人員確定的研究方案是:先從這組數(shù)據(jù)中任選
組,用剩下的
組數(shù)據(jù)建立線性回歸方程,再對(duì)被選取的
組數(shù)據(jù)進(jìn)行檢驗(yàn).
①若選取的是月
日與
月
日這
組數(shù)據(jù),請(qǐng)根據(jù)
月
日、
日和
日這三組數(shù)據(jù),求出
關(guān)于
的線性回歸方程?
②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的差的絕對(duì)值均不超過(guò)個(gè),則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)①中所得的線性回歸方程是否可靠?
附公式:,
.
【答案】(1);(2)①
;②是可靠的.
【解析】
(1)用列舉法求出基本事件數(shù),計(jì)算所求的概率值;
(2)①由數(shù)據(jù)計(jì)算平均數(shù)和回歸系數(shù),寫出關(guān)于
的線性回歸方程;
②根據(jù)線性回歸方程計(jì)算、
時(shí)
的值,再驗(yàn)證所得到的線性回歸方程是否可靠.
(1)依題意得,、
的所有情況為:
、
、
、
、
、
、
、
、
、
,共有
個(gè),
設(shè)“、
均不小于
”為事件
,則事件
包含的基本事件為:
、
、
共有
個(gè),
,即事件
的概率為
;
(2)①由數(shù)據(jù)得,
,
,
,
關(guān)于
的線性回歸方程為
;
②由①知,關(guān)于
的線性回歸方程為
,
當(dāng)時(shí),
,且
,
當(dāng)時(shí),
,且
.
因此,所得到的線性回歸方程是可靠的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),在新高考改革中,打破文理分科的“”模式初露端倪,其中語(yǔ)、數(shù)、外三門課為必考科目,剩下三門為選考科目選考科目成績(jī)采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來(lái)劃分等級(jí)并以此打分得到最后得分,假定
省規(guī)定:選考科目按考生成績(jī)從高到低排列,按照占總體
、
、
、
分別賦分
分、
分、
分、
分,為了讓學(xué)生們體驗(yàn)“賦分制”計(jì)算成績(jī)的方法,
省某高中高一(
)班(共
人)舉行了以此摸底考試(選考科目全考,單料全班排名),知這次摸底考試中的物理成績(jī)(滿分
分)頻率分布直方圖,化學(xué)成績(jī)(滿分
分)莖葉圖如圖所示,小明同學(xué)在這次考試中物理
分,化學(xué)
多分.
(1)采用賦分制后,求小明物理成績(jī)的最后得分;
(2)若小明的化學(xué)成績(jī)最后得分為分,求小明的原始成績(jī)的可能值;
(3)若小明必選物理,其他兩科從化學(xué)、生物、歷史、地理、政治五科中任選,求小明此次考試選考科目包括化學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(
為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在
內(nèi)有極值,試比較
與
的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是(t是參數(shù)).在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線
.
(1)當(dāng),
時(shí),求直線l與曲線C的直角坐標(biāo)方程;
(2)當(dāng)時(shí),若直線l與曲線C相交于A,B兩點(diǎn),設(shè)
,且
,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
在點(diǎn)
處的切線方程;
(2)討論的單調(diào)性;
(3)若函數(shù)在
上無(wú)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在定義域內(nèi)單調(diào)遞增,求
的值;
(2)討論的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(dòng)(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值
時(shí),三棱錐A﹣BCD的外接球的表面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
是邊長(zhǎng)為4的正方形,
平面
,
分別為
的中點(diǎn).
(1)證明:平面
.
(2)若,求二面角
的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com