【題目】對于定義在上的函數(shù)
,若存在
,使
恒成立,則稱
為“
型函數(shù)”;若存在
,使
恒成立,則稱
為“
型函數(shù)”.已知函數(shù)
.
(1)設(shè)函數(shù).若
,且
為“
型函數(shù)”,求
的取值范圍;
(2)設(shè)函數(shù).證明:當
,
為“
(1)型函數(shù)”;
(3)若,證明存在唯一整數(shù)
,使得
為“
型函數(shù)”.
【答案】(1);(2)證明見解析;(3)證明見解析.
【解析】
(1)將代入,依題意,即
恒成立,設(shè)
,求出函數(shù)
的最小值即可得解;
(2)分析可知,即證,令
,
,方法一:由不等式的性質(zhì)可知
在
上單調(diào)遞減,在
上單調(diào)遞增,故
,即得證;方法二:令
,再對函數(shù)
求導(dǎo),可得當
時,
,當
時,
,進而得到
的單調(diào)性,由此得證;
(3)問題等價于證明存在唯一整數(shù),
恒成立,易知當
及
時,不合題意,故只需證明
時符合題意即可,方法一:記
,分當
或
以及當
時證明即可;
方法二:記,利用導(dǎo)數(shù)求其最大值小于0即可得證.
(1)時,
.
因為為“
型函數(shù)”,
所以恒成立,即
恒成立.
設(shè),則
恒成立,
所以在
,
上單調(diào)遞減,
所以(1)
,
所以的取值范圍是
;
(2)證明:當時,要證
為“
(1)型函數(shù)”,
即證,即證
.
令,則
,
方法一:當時,
,
,則
;
當時,
,
,則
;
所以在
上單調(diào)遞減,在
上單調(diào)遞增,
則(1),又
(1)
,所以
,
所以為“
(1)型函數(shù)”.
方法二:令,則
,
所以函數(shù)在
上單調(diào)遞增,又
(1)
,
所以當時,
,當
時,
,
所以在
上單調(diào)遞減,在
上單調(diào)遞增,
以下同方法一.
(3)證明:函數(shù)為“
型函數(shù)”等價于
恒成立,
當時,
,不合題意;
當時,
,不合題意;
當時,
方法一:,
①當或
時,
;
②當時,
,由(2)知
,
所以,
綜上,存在唯一整數(shù),使得
為“
型函數(shù)”.
方法二:,
,
記,則
,
所以在
上單調(diào)遞減.
易得,
所以;
又因為,
所以存在唯一零點,使得
,
且為
的最大值點,
所以,
注意到在
上單調(diào)遞增,
所以,所以
.
綜上,存在唯一整數(shù),使得
為“
型函數(shù)”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
是自然對數(shù)的底數(shù)).證明:
(1)存在唯一的極值點;
(2)有且僅有兩個實根,且兩個實根互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用一個平行于底面的截面去截一個正棱錐,截面和底面間的幾何體叫正棱臺.如圖,在四棱臺中,
,
分別為
的中點.
(Ⅰ)求證:平面
;
(Ⅱ)若側(cè)棱所在直線與上下底面中心的連線所成的角為
,求直線
與平面
所成的角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形中,
,
,
,
,
,點E在
上,且
,將三角形
沿線段
折起到
的位置,
(如圖2).
(Ⅰ)求證:平面平面
;
(Ⅱ)在線段上存在點F,滿足
,求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M,N是平面兩側(cè)的點,三棱錐
所有棱長是2,
,
,如圖.
(1)求證:平面
;
(2)求平面與平面
所成銳二面角的余弦.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面
為邊長為
的菱形,側(cè)面
為矩形,其中
且
,
平面
,點
為
的中點.
(1)證明:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年新型冠狀病毒肺炎蔓延全國,作為主要戰(zhàn)場的武漢,僅用了十余天就建成了“小湯山”模式的火神山醫(yī)院和雷神山醫(yī)院,再次體現(xiàn)了中國速度.隨著疫情發(fā)展,某地也需要參照“小湯山”模式建設(shè)臨時醫(yī)院,其占地是出一個正方形和四個以正方形的邊為底邊、腰長為400m的等腰三角形組成的圖形(如圖所示),為使占地面積最大,則等腰三角形的底角為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為貫徹落實健康第一的指導(dǎo)思想,切實加強學(xué)校體育工作,促進學(xué)生積極參加體育鍛煉,養(yǎng)成良好的鍛煉習(xí)慣,提高體質(zhì)健康水平.某市抽調(diào)三所中學(xué)進行中學(xué)生體育達標測試,現(xiàn)簡稱為校、
校、
校.現(xiàn)對本次測試進行調(diào)查統(tǒng)計,得到測試成績排在前200名學(xué)生層次分布的餅狀圖、
校前200名學(xué)生的分布條形圖,則下列結(jié)論不一定正確的是( )
A.測試成績前200名學(xué)生中校人數(shù)超過
校人數(shù)的2倍
B.測試成績前100名學(xué)生中校人數(shù)超過一半以上
C.測試成績前151—200名學(xué)生中校人數(shù)最多33人
D.測試成績前51—100名學(xué)生中校人數(shù)多于
校人數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com