如圖,已知拋物線的焦點(diǎn)在拋物線
上.
(1)求拋物線的方程及其準(zhǔn)線方程;
(2)過拋物線上的動(dòng)點(diǎn)
作拋物線
的兩條切線
、
, 切點(diǎn)為
、
.若
、
的斜率乘積為
,且
,求
的取值范圍.
(1)的方程為
,其準(zhǔn)線方程為
(2)
解析試題分析:(1)的焦點(diǎn)為
,
所以,
.
故的方程為
,其準(zhǔn)線方程為
.
(2)任取點(diǎn),設(shè)過點(diǎn)P的
的切線方程為
.
由,得
.
由,化簡(jiǎn)得
,
記斜率分別為
,則
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/33/1/dnsgz.png" style="vertical-align:middle;" />,所以
所以,
所以
考點(diǎn):拋物線方程及支線與拋物線的位置關(guān)系
點(diǎn)評(píng):當(dāng)出現(xiàn)函數(shù)曲線在某一點(diǎn)處的切線時(shí),常首先設(shè)出切點(diǎn)坐標(biāo),利用導(dǎo)數(shù)的幾何意義(函數(shù)在某一點(diǎn)處的導(dǎo)數(shù)值等于該點(diǎn)處的切線斜率)求出切線斜率寫出切線方程
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直接坐標(biāo)系中,直線
的方程為
,曲線
的參數(shù)方程為
(
為參數(shù)).
(I)已知在極坐標(biāo)(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸)中,點(diǎn)
的極坐標(biāo)為(4,
),判斷點(diǎn)
與直線
的位置關(guān)系;
(II)設(shè)點(diǎn)是曲線
上的一個(gè)動(dòng)點(diǎn),求它到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓的離心率為
,兩焦點(diǎn)分別為
,點(diǎn)M是橢圓C上一點(diǎn),
的周長(zhǎng)為16,設(shè)線段MO(O為坐標(biāo)原點(diǎn))與圓
交于點(diǎn)N,且線段MN長(zhǎng)度的最小值為
.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點(diǎn)在橢圓C上運(yùn)動(dòng)時(shí),判斷直線
與圓O的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)B(0,1),點(diǎn)C(0,—3),直線PB、PC都是圓的切線(P點(diǎn)不在y軸上).
(I)求過點(diǎn)P且焦點(diǎn)在x軸上拋物線的標(biāo)準(zhǔn)方程;
(II)過點(diǎn)(1,0)作直線與(I)中的拋物線相交于M、N兩點(diǎn),問是否存在定點(diǎn)R,使
為常數(shù)?若存在,求出點(diǎn)R的坐標(biāo)與常數(shù);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:
的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切.
(1)求橢圓C的方程;
(2)設(shè),
、
是橢圓
上關(guān)于
軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)
交橢圓
于另一點(diǎn)
,求直線
的斜率的取值范圍;
(3)在(2)的條件下,證明直線與
軸相交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系內(nèi),已知曲線的方程為
,以極點(diǎn)為原點(diǎn),極軸方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f2/9/tmben.png" style="vertical-align:middle;" />正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)求曲線的直角坐標(biāo)方程以及曲線
的普通方程;
(2)設(shè)點(diǎn)為曲線
上的動(dòng)點(diǎn),過點(diǎn)
作曲線
的兩條切線,求這兩條切線所成角余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上.若橢圓上的點(diǎn)
到焦點(diǎn)
、
的距離之和等于4.
(1)寫出橢圓的方程和焦點(diǎn)坐標(biāo).
(2)過點(diǎn)的直線與橢圓交于兩點(diǎn)
、
,當(dāng)
的面積取得最大值時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)
的點(diǎn)的軌跡,加上
兩點(diǎn),所成的曲線
可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論
的形狀與
值的關(guān)系;
(Ⅱ)當(dāng)時(shí),對(duì)應(yīng)的曲線為
;對(duì)給定的
,對(duì)應(yīng)的曲線為
,若曲線
的斜率為
的切線與曲線
相交于
兩點(diǎn),且
(
為坐標(biāo)原點(diǎn)),求曲線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的左、右焦點(diǎn)分別為
,
上頂點(diǎn)為,在
軸負(fù)半軸上有一點(diǎn)
,滿足
,且
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)是過
三點(diǎn)的圓上的點(diǎn),
到直線
的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓
的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)作斜率為
的直線
與橢圓
交于
兩點(diǎn),線段
的中垂線與
軸相交于點(diǎn)
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com