亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    精英家教網(wǎng)如圖,已知平面A1B1C1平行于三棱錐V-ABC的底面ABC,等邊△AB1C所在的平面與底面ABC垂直,且∠ACB=90°,設(shè)AC=2a,BC=a
    (1)求證直線B1C1是異面直線AB1與A1C1的公垂線;
    (2)求點(diǎn)A到平面VBC的距離;
    (3)求二面角A-VB-C的大。
    分析:(I)由題意及面面垂直平行的性質(zhì)定理,和直線與直線垂直得到線面垂直,在利用公垂線的定義即可得證;
    (II)解法1:有(1)可知BC⊥平面AB1C,且△AB1C為正三角形,利用這些就可判斷出線段AD的長即為點(diǎn)A到平面VBC的距離;
    解法2:此問還可以利用三棱錐的體積可以進(jìn)行頂點(diǎn)輪換法求出;
    (III)利用三垂線定理,找到二面角的平面角,利用三角形解除二面角的大小.
    解答:解:(Ⅰ)證明:∵平面A1B1C1∥平面ABC,精英家教網(wǎng)
    ∴B1C1∥BC,B1C1∥BC∵BC⊥AC∴B1C1⊥A1C1
    又∵平面AB1C⊥平面ABC,平面AB1C∩平面ABC=AC,
    ∴BC⊥平面AB1C,
    ∴BC⊥AB1
    ∴B1C1⊥AB1,
    又∵B1C1∥BC,B1C1∥BC,且BC⊥AC∴B1C1⊥A1C1,
    ∴B1C1為AB1與A1C1的公垂線.

    (Ⅱ)解法1:過A作AD⊥B1C于D,
    ∵△AB1C為正三角形,
    ∴D為B1C的中點(diǎn).
    ∵BC⊥平面AB1C
    ∴BC⊥AD,
    又B1C∩BC=C,
    ∴AD⊥平面VBC,
    ∴線段AD的長即為點(diǎn)A到平面VBC的距離.
    在正△AB1C中,l.
    ∴點(diǎn)A到平面VBC的距離為
    3
    a

    解法2:取AC中點(diǎn)O連接B1O,則B1O⊥平面ABC,且B1O=
    3
    a

    由(Ⅰ)知BC⊥B1C,設(shè)A到平面VBC的距離為x,
    VB1-ABC=VA-BB1C
    1
    3
    ×
    1
    2
    BC•AC•B1O=
    1
    3
    ×
    1
    2
    BC•B1C•x
    ,
    解得x=
    3
    a

    即A到平面VBC的距離為
    3
    a

    d=||
    AB1
    |•cos<
    AB1
    ,n>|
    =||
    AB1
    |•cos<
    AB1
    •n
    |
    AB1
    |•|n|
    >|
    =
    2
    3
    a
    2
    =
    3
    a

    所以,A到平面VBC的距離為
    3
    a


    (III)過D點(diǎn)作DH⊥VB于H,連AH,由三重線定理知AH⊥VB
    ∴∠AHD是二面角A-VB-C的平面角.
    在Rt△AHD中,
    DH=
    B1D•BC
    B1B
    =
    5
    5
    a

    tan∠AHD=
    AD
    DH
    =
    15

    ∠AHD=arctan
    15

    所以,二面角A-VB-C的大小為arctan
    15
    點(diǎn)評:(I)抓住題中條件,發(fā)揮學(xué)生的空間想象能力及理解能力,重點(diǎn)考查了面面垂直的性質(zhì)定理,還考查了面面平行的性質(zhì)及兩個異面直線間公垂線的定義;
    (II)此問重點(diǎn)考查了線面垂直的判定,還在令解的方法中考查了三棱錐計算體積時常常使用頂點(diǎn)進(jìn)行輪換的方法(也是常說的等體積輪換法)
    (III)此問重點(diǎn)考查了利用三垂線定理找二面角的平面角的常用方法,還考查了求角的大小的反三角函數(shù)的表示方法.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,已知正四棱柱ABCD-A1B1C1D1中,2AB=BB1
    過點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E.
    (1)求證:面A1CB⊥平面BED;
    (2)求A1B與平面BDE所成的角的正弦值

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,已知點(diǎn)P在圓柱OO1的底面圓O上,AB為圓O的直徑,圓柱OO1的表面積為20π,OA=2,∠AOP=120°.
    (1)求異面直線A1B與AP所成角的大小;(結(jié)果用反三角函數(shù)值表示)
    (2)求點(diǎn)A到平面A1PB的距離.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    如圖,已知正三棱柱ABC-A1B1C1,AA1=AB=2a,D、E分別為CC1、A1B的中點(diǎn).
    (1)求證:DE∥平面ABC;
    (Ⅱ)求證:AE⊥BD;
    (Ⅲ)求三棱錐D-A1BA的體積.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    如圖,已知正四棱柱ABCD-A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F.
    (Ⅰ)求證:A1C⊥平面BED;
    (Ⅱ)求A1B與平面BDE所成的角的正弦值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    如圖,已知棱長為1的正方體ABCD-A1B1C1D1
    (1)線段A1B上是否存在一點(diǎn)P,使得A1B⊥平面PAC?若存在,確定P點(diǎn)的位置,若不存在,說明理由;
    (2)點(diǎn)P在A1B上,若二面角C-AP-B的大小是arctan2,求BP的長;
    (3)Q點(diǎn)在對角線B1D,使得A1B∥平面QAC,求
    B1QQD

    查看答案和解析>>

    同步練習(xí)冊答案