亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    15、x∈R,函數(shù)f(x)=|x2-2x-t|在區(qū)間[0,3]上的最大值為2,則t=
    1
    分析:由已知中,函數(shù)f(x)=|x2-2x-t|在區(qū)間[0,3]上的最大值為2,結(jié)合二次函數(shù)的圖象和性質(zhì),我們易得到函數(shù)f(x)=|x2-2x-t|在區(qū)間[0,3]上的最大值為f(1)或f(3),進(jìn)而可以構(gòu)造關(guān)于m的不等式組,解不等式組,即可求出滿足條件的t值.
    解答:解:∵函數(shù)y=x2-2x-t的圖象是開口方向朝上,以x=1為對稱軸的拋物線
    ∴函數(shù)f(x)=|x2-2x-t|在區(qū)間[0,3]上的最大值為f(1)或f(3)
    即f(1)=2,f(3)≤2,解得t=1
    或f(3)=2,f(1)≤2,解得t=1
    綜合可得t=1
    故答案為:1.
    點評:本題考查的知識點是二次函數(shù)在閉區(qū)間上的最值,其中根據(jù)二次函數(shù)的圖象和性質(zhì),分析出函數(shù)在區(qū)間[0,3]上的最大值為f(1)或f(3),進(jìn)而構(gòu)造關(guān)于m的不等式組,是解答本題的關(guān)鍵.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    定義域為R的函數(shù)f(x)滿足條件:
    [f(x1)-f(x2)](x1-x2)>0,(x1,x2R+x1x2);
    ②f(x)+f(-x)=0(x∈R); 
    ③f(-3)=0.
    則不等式x•f(x)<0的解集是( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    下列說法:
    ①“?x∈R,2x>3”的否定是“?x∈R,2x≤3”;
    ②命題“函數(shù)y=sin(?x+
    π
    3
    )
    的最小正周期是π,則?=2”是真命題;
    ③命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是假命題;
    ④f(x)是(-∞,0)∪(0,+∞)上的偶函數(shù),x>0時f(x)的解析式是f(x)=x3,
    則x<0時f(x)的解析式是f(x)=-x3
    其中正確的說法是( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    下面對命題“函數(shù)f(x)=x+
    1
    x
    是奇函數(shù)”的證明不是綜合法的是( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
    f(-
    3
    4
    ) <f(
    15
    2
    )
    ;
    ②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
    ③f(x)(x≥0)的圖象與x軸的交點的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
    ④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
    其中真命題的個數(shù)為( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

    下列說法:
    ①“?x∈R,2x>3”的否定是“?x∈R,2x≤3”;
    ②命題“函數(shù)y=sin(?x+
    π
    3
    )
    的最小正周期是π,則?=2”是真命題;
    ③命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是假命題;
    ④f(x)是(-∞,0)∪(0,+∞)上的偶函數(shù),x>0時f(x)的解析式是f(x)=x3
    則x<0時f(x)的解析式是f(x)=-x3
    其中正確的說法是( 。
    A.①③④B.①②③C.①②④D.②③④

    查看答案和解析>>

    同步練習(xí)冊答案