亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    在單調(diào)遞增數(shù)列{an}中,a1=2,不等式(n+1)an≥na2n對(duì)任意n∈N*都成立,
    (Ⅰ)求a2的取值范圍;
    (Ⅱ)判斷數(shù)列{an}能否為等比數(shù)列?說(shuō)明理由;
    (Ⅲ)設(shè),求證:對(duì)任意的n∈N*,。
    (Ⅰ)解:因?yàn)閧an}是單調(diào)遞增數(shù)列,所以,
    令n=1,,所以。
    (Ⅱ)證明:數(shù)列{an}不能為等比數(shù)列。
    用反證法證明:假設(shè)數(shù)列{an}是公比為q的等比數(shù)列,,
    因?yàn)閧an}單調(diào)遞增,所以q>1,
    因?yàn)閚∈N*,(n+1)an≥na2n都成立,
    所以n∈N*,, ①
    因?yàn)閝>1,所以,使得當(dāng)時(shí),,
    因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20110919/20110919105156875978.gif">(n∈N*),
    所以,當(dāng)時(shí),,與①矛盾,故假設(shè)不成立。
    (Ⅲ)證明:觀察:,,…,
    猜想:
    用數(shù)學(xué)歸納法證明:
    (1)當(dāng)n=1時(shí),成立;
    (2)假設(shè)當(dāng)n=k時(shí),成立;
    當(dāng)n=k+1時(shí),

    ,
    所以,
    根據(jù)(1)(2)可知,對(duì)任意n∈N*,都有,即,
    由已知得,
    所以,
    所以當(dāng)n≥2時(shí),,
    因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20110919/20110919105157484980.gif">,
    所以對(duì)任意n∈N*,
    對(duì)任意n∈N*,存在m∈N*,使得
    因?yàn)閿?shù)列{an}單調(diào)遞增,所以,,
    因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20110919/20110919105157640963.gif">,
    所以。
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    在單調(diào)遞增數(shù)列{an}中,a1=1,a2=2,且a2n-1,a2n,a2n+1成等差數(shù)列,a2n,a2n+1,a2n+2成等比數(shù)列,n=1,2,3,….
    (1)分別計(jì)算a3,a5和a4,a6的值;
    (2)求數(shù)列{an}的通項(xiàng)公式(將an用n表示);
    (3)設(shè)數(shù)列{
    1
    an
    }
    的前n項(xiàng)和為Sn,證明:Sn
    4n
    n+2
    ,n∈N*

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    (2011•東城區(qū)二模)在單調(diào)遞增數(shù)列{an}中,a1=2,不等式(n+1)an≥na2n對(duì)任意n∈N*都成立.
    (Ⅰ)求a2的取值范圍;
    (Ⅱ)判斷數(shù)列{an}能否為等比數(shù)列?說(shuō)明理由;
    (Ⅲ)設(shè)bn=(1+1)(1+
    1
    2
    )…(1+
    1
    2n
    )
    ,cn=6(1-
    1
    2n
    )
    ,求證:對(duì)任意的n∈N*,
    bn-cn
    an-12
    ≥0

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市海淀區(qū)北師特學(xué)校高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

    在單調(diào)遞增數(shù)列{an}中,a1=2,不等式(n+1)an≥na2n對(duì)任意n∈N*都成立.
    (Ⅰ)求a2的取值范圍;
    (Ⅱ)判斷數(shù)列{an}能否為等比數(shù)列?說(shuō)明理由;
    (Ⅲ)設(shè),,求證:對(duì)任意的n∈N*,

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2011年北京市東城區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

    在單調(diào)遞增數(shù)列{an}中,a1=2,不等式(n+1)an≥na2n對(duì)任意n∈N*都成立.
    (Ⅰ)求a2的取值范圍;
    (Ⅱ)判斷數(shù)列{an}能否為等比數(shù)列?說(shuō)明理由;
    (Ⅲ)設(shè),,求證:對(duì)任意的n∈N*,

    查看答案和解析>>

    同步練習(xí)冊(cè)答案