亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
    (1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;
    (2)在(1)條件下,記為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=,Sn為數(shù)列{dn}的前n項(xiàng)之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求;
    (3)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和.求Tn表達(dá)式.
    【答案】分析:(1)先求出函數(shù)y=f(x)的反函數(shù)y=f-1(x),根據(jù)bn=f-1(n)可求出p,即可求出an
    (2)先求出dn,然后求出sn,根據(jù)Hn為數(shù)列{Sn}的調(diào)和平均數(shù),可求出Hn的關(guān)系式,從而求出;
    (3)先根據(jù)正數(shù)數(shù)列{cn}的前n項(xiàng)之和求出c1,當(dāng)n≥2時(shí),cn=Tn-Tn-1,所以Tn2-Tn-12=n,然后利用疊加法求出Tn表達(dá)式即可.
    解答:解:(1)由題意的:f-1(x)==f(x)=,所以p=-1,(2分)
    所以an=(3分)
    (2)an=,,(4分)
    sn為數(shù)列{dn}的前n項(xiàng)和,,(5分)
    又Hn為數(shù)列{Sn}的調(diào)和平均數(shù),
    所以(8分)
    (10分)
    (3)因?yàn)檎龜?shù)數(shù)列{cn}的前n項(xiàng)之和
    所以解之得:c1=1,T1=1(11分)
    當(dāng)n≥2時(shí),cn=Tn-Tn-1,所以
    即Tn2-Tn-12=n(14分)
    所以,T2n-1-T2n-2=n-1,T2n-2-T2n-3=n-2,…T22-T12=2累加得:
    Tn2-T12=2+3+4+…+n2(16分)
    ,(18分)
    點(diǎn)評(píng):本題主要考查了反函數(shù)以及數(shù)列與函數(shù)的綜合問題,同時(shí)考查了數(shù)列的求和以及累加法,屬于難題.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
    (1)若函數(shù)f(x)=2
    x
    確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項(xiàng)公式;
    (2)對(duì)(1)中{bn},不等式
    1
    bn+1
    +
    1
    bn+2
    +…+
    1
    b2n
    1
    2
    loga(1-2a)
    對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍;
    (3)設(shè)cn=
    1+(-1)λ
    2
    3n+
    1-(-1)λ
    2
    •(2n-1)(λ為正整數(shù))
    ,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項(xiàng)組成的數(shù)列為{tn},求數(shù)列{tn}前n項(xiàng)和Sn

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對(duì)于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
    (1)設(shè)函數(shù)f(x)=
    px+1
    x+1
    ,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an;
    (2)已知正整數(shù)列{cn}的前項(xiàng)和sn=
    1
    2
    (cn+
    n
    cn
    ).寫出Sn表達(dá)式,并證明你的結(jié)論;
    (3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=
    -1
    anSn2
    ,Dn是數(shù)列{dn}的前n項(xiàng)和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
    (1)若函數(shù)f(x)=
    px+1
    x+1
    確定數(shù)列{an}的自反數(shù)列為{bn},求an;
    (2)在(1)條件下,記
    n
    1
    x1
    +
    1
    x2
    +…
    1
    xn
    為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
    2
    an+1
    -1
    ,Sn為數(shù)列{dn}的前n項(xiàng)之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
    lim
    n→∞
    =
    Hn
    n

    (3)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Tn=
    1
    2
    (Cn+
    n
    Cn
    )
    .求Tn表達(dá)式.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2007•浦東新區(qū)一模)由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
    (1)若函數(shù)f(x)=2
    x
    確定數(shù)列{an}的反數(shù)列為{bn},求bn;
    (2)設(shè)cn=3n,數(shù)列{cn}與其反數(shù)列{dn}的公共項(xiàng)組成的數(shù)列為{tn}
    (公共項(xiàng)tk=cp=dq,k、p、q為正整數(shù)).求數(shù)列{tn}前10項(xiàng)和S10;
    (3)對(duì)(1)中{bn},不等式
    1
    bn+1
    +
    1
    bn+2
    +…+
    1
    b2n
    1
    2
    loga(1-2a)
    對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    若函數(shù)y=f(x)存在反函數(shù)y=f-1(x),由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),由函數(shù)y=f-1(x)確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
    (1)若數(shù)列{bn}是函數(shù)f(x)=
    x+1
    2
    確定數(shù)列{an}的反數(shù)列,試求數(shù)列{bn}的前n項(xiàng)和Sn
    (2)若函數(shù)f(x)=2
    x
    確定數(shù)列{cn}的反數(shù)列為{dn},求{dn}的通項(xiàng)公式;
    (3)對(duì)(2)題中的{dn},不等式
    1
    dn+1
    +
    1
    dn+2
    +…+
    1
    d2n
    1
    2
    log(1-2a)對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案