【題目】設(shè)點(diǎn),
的坐標(biāo)分別為
,
,直線
和
相交于點(diǎn)
,且
和
的斜率之差是1.
(1)求點(diǎn)的軌跡
的方程;
(2)過軌跡上的點(diǎn)
,
,作圓
:
的兩條切線,分別交
軸于點(diǎn)
,
.當(dāng)
的面積最小時(shí),求
的值.
【答案】(1)(2)
【解析】
(1)設(shè)出點(diǎn)坐標(biāo),根據(jù)
和
的斜率之差是
列方程,化簡(jiǎn)后求得點(diǎn)
的軌跡
的方程.注意排除斜率不存在的情況.
(2)設(shè)出切線的斜率,由點(diǎn)斜式寫出切線方程,利用圓心到切線的距離為
列方程,化簡(jiǎn)后寫出關(guān)于切線
、
的斜率
,
的根與系數(shù)關(guān)系,求得
兩點(diǎn)的坐標(biāo),進(jìn)而求得
的面積的表達(dá)式,化簡(jiǎn)后利用基本不等式求得
的面積的最小值以及此時(shí)對(duì)應(yīng)
的值.
(1)設(shè),由題意得
.
化簡(jiǎn)得點(diǎn)的軌跡
的方程為:
.
(2)由點(diǎn)所引的切線方程必存在斜率,設(shè)為
.
則切線方程為,即
.
其與軸的交點(diǎn)為
,
而圓心到切線的距離
,
整理得:①,
切線、
的斜率分別為
,
,則
,
是方程①的兩根,
故,
而切線與軸的交點(diǎn)為
,故
,
,
又,
,
∴
,
將代入得
,
而點(diǎn)在
上,故
,
∴
,
當(dāng)且僅當(dāng),即
時(shí)等號(hào)成立.
又,∴
,
故當(dāng)點(diǎn)坐標(biāo)為
,
時(shí),
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)滿足方程
.
(1)求點(diǎn)M的軌跡C的方程;
(2)作曲線C關(guān)于軸對(duì)稱的曲線,記為
,在曲線C上任取一點(diǎn)
,過點(diǎn)P作曲線C的切線l,若切線l與曲線
交于A,B兩點(diǎn),過點(diǎn)A,B分別作曲線
的切線
,證明
的交點(diǎn)必在曲線C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用
萬元滿足
(其中
,
為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本
萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為
元
件.
(1)將該產(chǎn)品的利潤(rùn)萬元表示為促銷費(fèi)用
萬元的函數(shù);
(2)促銷費(fèi)用投入多少萬元時(shí),該公司的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有次水下考古活動(dòng)中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個(gè)方面:①下潛時(shí),平均速度為每分鐘米,每分鐘的用氧量為
升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時(shí),速度為每分鐘
米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動(dòng)中的總用氧量為
升;
(1)將表示為
的函數(shù);
(2)若,求總用氧量
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
(
),右焦點(diǎn)
,點(diǎn)
在橢圓上;
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在過原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),且?若存在,請(qǐng)求出所有符合要求的直線;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在
上的函數(shù),記
,
的最大值為
.若存在
,滿足
,則稱一次函數(shù)
是
的“逼近函數(shù)”,此時(shí)的
稱為
在
上的“逼近確界”.
(1)驗(yàn)證:是
的“逼近函數(shù)”;
(2)已知.若
是
的“逼近函數(shù)”,求
的值;
(3)已知的逼近確界為
,求證:對(duì)任意常數(shù)
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,
,
,
分別為內(nèi)角
,
,
的對(duì)邊,且滿
.
(1)求的大。
(2)再在①,②
,③
這三個(gè)條件中,選出兩個(gè)使
唯一確定的條件補(bǔ)充在下面的問題中,并解答問題.若________,________,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場(chǎng)規(guī)劃將果樹種在正方形的場(chǎng)地內(nèi).為了保護(hù)果樹不被風(fēng)吹,決定在果樹的周圍種松樹. 在下圖里,你可以看到規(guī)劃種植果樹的列數(shù)(n),果樹數(shù)量及松樹數(shù)量的規(guī)律:
(1)按此規(guī)律,n = 5時(shí)果樹數(shù)量及松樹數(shù)量分別為多少;并寫出果樹數(shù)量,及松樹數(shù)量
關(guān)于n的表達(dá)式
(2)定義:
為
增加的速度;現(xiàn)農(nóng)場(chǎng)想擴(kuò)大種植面積,問:哪種樹增加的速度會(huì)更快?并說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
是自然對(duì)數(shù)的底數(shù)).證明:
(1)存在唯一的極值點(diǎn);
(2)有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為相反數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com